Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Приготовление некоторых катализаторов и носителей

    Наконец, важнейшую роль играет и сам катализатор, способ его приготовления и т, д. Добавление различных модификаторов нли применение смесей оксидов и солей способно сильно изменять активность и селективность контакта. Так, некоторые каталитические яды (галогены, селен), дезактивируя серебряный катализатор окисления этилена, существенно повышают его селективность. Оксиды молибдена и висмута, в индивидуальном виде вызывающие полное сгорание олефинов, в форме молибдата висмута (В120з МоОз = 1 2) являются селективными катализаторами гетерогенного окисления пропилена. Большое влияние оказывают носитель, размер зерен катализатора, его пористость и т. д. Ввиду возможности последовательного окисления целевого вещества и высокой скорости самой химической реакции на поверхности катализатора переход процесса во внутридиффузиоиную область весьма нежелателен, поэтому используют катализаторы с небольши.ми зернами и сравнительно крупными порами. [c.416]


    Было исследовано [25] удаление некоторых органических сернистых соединений из синтез-газов. Катализаторы состояли из смесей окислов меди, хрома и ванадия в некоторых случаях окись ванадия заменяли окисью урана. Испытывали катализаторы четырех типов плавленый, осажденный, осажденный на носителе и приготовленный простым смешением окислов. Типичный состав (в пересчете на содержание чистого металла), следующий 80 ч. меди, 10 ч. хрома и 10 ч. ванадия. Подробно описано приготовление различных катализаторов этого типа [25]. [c.336]

    Как уже говорилось выше, сплавы могут образоваться в процес< . приготовления металлического катализатора путем восстановления окислов, осажденных на носитель, который также является окислом. Если этот носитель способен в какой-то степени восстанавливаться, т может образоваться сплав, отличающийся по электронной структуре от чистого металла. Есть основания считать, что изменения в кристаллической и электронной структуре в этом случае чаще всего затрагивают лишь наиболее близкие к поверхности слои атомов. В некоторых работах рассматривается вопрос об образовании таких поверхностных сплавов , однако в большинстве случаев высказываемые по этому поводу соображения носят спекулятивный характер. [c.131]

    В последнее время вопрос о большом влиянии способа приготовления катализатора на число активных центров на единице поверхности, по крайней мере для некоторых катализаторов и реакций, подвергся пересмотру (Боресков). Например, для платинового катализатора установлено, что активность поверхности образца платинового катализатора, независимо от его формы и способа приготовления (фольга, сетка, платиновая чернь, использование разных носителей и т. д.), получается приблизительно одинаковой, если одновременно точно определять истинную поверхность образца я пересчитывать активность катализатора на 1 истинной поверхности. По-видимому, в некоторых случаях способ приготовления катализатора несуществен для удельной активности катализатора. [c.463]

    Разложение химического соединения металла с образованием окисла, который затем может быть восстановлен до металла водородом, представляет собой важную стадию приготовления катализатора. Разложению может подвергаться соединение, находящееся внутри пор носителя, или чистый, без носителя, порошок металла. Нитраты тяжелых металлов гидратированы, и нх разложение — сложный процесс, о деталях которого известно немного. Достаточно отметить, что наиболее прочно связанная гидратная вода (находится в виде лиганда катиона тяжелого металла) выделяется одновременно с разложением нитрата, поэтому газообразные продукты разложения обычно представляют собой сложную смесь окислов азота, азотной кислоты, кислорода и воды. Хотя эти продукты в конце концов удаляются, они могут вызывать значительную коррозию носителя. Несмотря на то что безводный нитрат меди(II) летуч (возгоняется без разложения в вакууме при 420—470 К) и что другие безводные нитраты тяжелых металлов, как известно, характеризуются некоторой летучестью, это их свойство, как молено полагать, не играет существенной роли при получении катализаторов, так как окислы металлов образуются при разложении гидратированных нитратов в присутствии кислорода. [c.176]


    ПРИГОТОВЛЕНИЕ НЕКОТОРЫХ КАТАЛИЗАТОРОВ И НОСИТЕЛЕЙ Активированный уголь [c.52]

    Катализаторы, приготовленные из чистых компонентов, не обладают достаточной механической прочностью, а некоторые компоненты катализатора дороги. Поэтому активную массу (т. е. собственно катализатор) наносят на носитель, в качестве которого обычно применяется силикагель. [c.54]

    В последнее время нами разработан активный и частично регенерируемый катализатор, содержащий 10% Ni, нанесенного на смесь М -шпинели с А1зОз. В процессе приготовления этого катализатора для предотвращения образования Ы1-шпинели часть пустот в решетке была занята ионами Mg. Для этой цели на У-А12О3 было нанесено некоторое количество MgO (в виде раствора Mg(NOз)2) и проведено прокаливание смеси при 500° С. В результате образовалась дефектная шпинель, что было показано рентгенографически. Такая шпинель была использована в качестве носителя при приготовлении [c.123]

    Операции приготовления. Пропитка угля катализаторами имеет, в принципе, такую же цель, как в приготовлении нанесенных катализаторов, где желательно максимальное диспергирование активных примесей (добавок) на высокоразвитой поверхности носителя. На приготовление таких катализаторов с высокой удельной поверхностью (см. гл. 5) влияют многие факторы pH пропиточного раствора, свойства соли, концентрация раствора и способ пропитки. Из большого числа различных методов пропитки, некоторые подходят для пропитки угля. Вследствие развитой микропористости угля особенно эффективной и может оказаться вакуумная пропитка. Однако улучшение процесса газификации должно быть достаточно существенным, чтобы оправдывать такую сложную операцию обработки угля. Изменения pH пропиточного раствора также могут иметь очень важное значение с точки зрения кислотно-основных свойств угля [28]. [c.250]

    Для того чтобы прийти к такому выводу, пришлось преодолеть некоторые трудности. Опыты начались с использования пемзы в качестве носителя, в результате чего никель накапливался на дне каталитического реактора. Затем мы смешали гидрат закиси никеля с каолином, отпрессовали из этой смеси таблетки и сравнили катализатор этого состава с никелем, осажденным из раствора нитрата никеля на высокопористом керамическом носителе. Обнаруженное в опытах с этими по-разному приготовленными никелевыми катализаторами существенное различие в их поведении ясно указывало, что из одного элемента нельзя получить эффективного устойчивого катализатора. [c.564]

    Последнее должно быть критерием выбора постоянного изготовителя. Автор катализатора должен убедиться, что изготовитель имеет большой опыт в нужной области. Некоторые фирмы зарекомендовали себя как превосходные изготовители ряда металлических катализаторов, например палладия, платины, никеля и ванадия, или таких их носителей, как оксид алюминия, оксид кремния, цеолиты или уголь. Кроме того, фирма может в значительной мере владеть специфическими методиками приготовления катализатора. [c.40]

    В настоящей работе мы описываем опыты по изомеризации некоторых циклопропановых углеводородов в олефины в присутствии таких веществ, как алюмосиликат, кизельгур и пемза, часто употребляемых как носители для приготовления гидрирующих катализаторов. Оказалось, что в присутствии алюмосиликата этилциклопропан почти полностью изомеризовался в смесь олефинов нормального строения уже при 50°С, в присутствии кизельгура — на 75% при 120°С, тогда как на пемзе при 120°С изомеризация не проходила вовсе, при 170°С проходила на 20%, а при 220°С — на 45%. [c.88]

    Боресков и сотрудники обратили внимание на то, что твердые вещества с ковалентными связями лучше противостоят релаксационным явлениям, спеканию, выравниванию дефектов, чем вещества с ионным типом связей [50]. Это, вероятно, сможет стать в некоторой степени принципом подбора носителей и структур для стабилизации катализаторов, однако пока вопрос еще недостаточно разработан. Таким образом, в большинстве случаев не остается ничего другого, как следовать очевидному принципу, что при прочих равных условиях для приготовления катализатора следует применять возможно более высокоплавкие и термостойкие соединения. [c.200]

    В синтезе углеводородов из окиси углерода и водорода применяются катализаторы, приготовленные, как правило, на основе металлов восьмой группы периодической системы кобальта, никеля, железа. Промоторами служат трудновосстанавливаемые окислы тория, марганца, магния, алюминия, хрома и др. В состав железных катализаторов могут входить медь и щелочной активатор, например поташ, сода. Наиболее промотирующим действием отличаются окислы марганца, тория и магния [1, 2]. Катализаторы обычно применяются на носителях [2,3]. Материал носителя, относящийся даже к одной и той же минералогической группе, может, в зависимости от происхождения и предварительной обработки, различно влиять на свойства каждого отдельного катализатора. Носитель в данном процессе не может рассматриваться как некоторая инертная масса, служащая толдзко для создания большой поверхности. [c.241]


    В процессах окисления органических веществ в жидкой фазе часто используются не специально приготовленные катализаторы, а обычные неорганические соединения, в их состав обычно входят элементы, атомы которых легко меняют свою валентность, например Со, Си, Мо. Эти ионы, как правило, соединены с достаточно большими органическими фрагментами и образуют соли или хелаты, растворимые в окисляющемся органическом веществе. Некоторые из таких реакций окисления имеют радикальный характер, и добавление бром-иона может инициировать реакцию преимущественно вследствие образования атома брома - носителя цепи. [c.284]

    Достигнут некоторый прогресс в разработке систем, устойчивых к сере. Как известно, взаимодействия катализатор — носитель улучшают химические свойства каталитического компонента и могут снизить его чувствительность к сере. Одним из примеров этого является уменьшение чувствительности к сере у никеля на 2гОг [20] по сравнению с никелем на АЬОз. Новые методы приготовления композиций высокодисперсных веществ могут оказаться полезными в исследованиях и распространении концепций взаимодействия катализатор — носитель на чувствительность катализаторов к сере. При низких концентрациях серы (менее 100 млн- ) могут найти применение-стойкие к сере сплавы и интерметаллические соединения, разработанные в последнее десятилетие. Обширная область новых каталитических веществ, известных из неорганической химии, также нуждается в освоении. Многие металлические кластерные оксиды, например Mg2MoзOa, представляются перспективными, но они еще не были изучены в качестве катализаторов метанирования или конверсии СО. [c.242]

    Данные соединения имеют хорошо идентифицированные и максимально доступные реакционные центры, необычные и управляемые связи металл — металл. Они обладают высокой активностью и селективностью, но плохой термической стабильностью. Они могут быть исходными веществами для приготовления катализатора на носителе с высокой поверхностью. Существуют некоторые указания на стойкость к сере, но они не подтверждены экспериментально. [c.114]

    В то же время в некоторых отечественных публикациях 412 приводятся данные об успешном использовании тонкопористого катализатора со средним радиусом пор 37 Я, Существенное влияние на механические свойства, ак-тивнос- ь, селективность и стабильность катализаторов гидроочистки оказывают способы их приготовления. В качестве носителей наиболее употребляема активная окись алюминия ( Г " г -А 2°3> в чистом виде и модифицированная некоторыми добавками 4,25,42,43 ], Нане -сение гидрирующих компонентов осуществляется различными способами - от методов простой пропитки готового носителя солями активных металлов до процессов совместного осаждения компонентов с активной окисью алюминия 4,9, 10,42,44J. Предпочтение отдается, как правило, методу совместного осаждения, так как полученные катализаторы обладают в этом случае лучшими свойствами. С точки зрения сокращения потерь ценных металлов более экономичным является способ пропитки l0J, [c.23]

    Приготовление нятиокиси ванадия. Наиболее удобным и активным контактом для окисления нафталина является пятиокись ванадия. Этот катализатор применяется на носителе (окись алюминия, силикагель), и метод приготовления сводится к пропитыванию носителя раствором ванадата аммония с последующей сушкой катализатора при 110° и прокаливанием при 400—600°. В последнее время для некоторых окислительных реакций применяется плавленая пятиокись ванадия. Для приготов.ле-ния этого катализатора используется ванадат аммония, который разлагают при 400° до пятиокиси ванадия, затем температуру повышают до 600°, при которой пятиокись ванадия плавится. После охлаждения эту застывшую массу дробят на кусочки размером 2—3 мм- Пятиокись ванадия активируют в реакторах реакционной смесью (углеводород -)- кислород). Эта активация но данным некоторых исследователей [79, 80] связана с образованием на поверхности окисла ванадия состава 204,34. [c.24]

    Рассмотрим некоторые особенности приготовления катализаторов пропиткой платинохлористоводородной кислотой. Адсорбция кислоты существенно зависит от природы носителя (табл. 2) [22]. [c.189]

    Общая часть (30 часов на V (курсе), в которую входят следующие разделы сведения из истории катализа главные признаки и свойства катализа катализ и термодинамика некоторые понятия из статистической механики катализаторы и принципы их приготовления строение твердого тела неоднородность поверхности катализаторов электронные овой-ства катализаторов катализаторы и менделеевская таблица смещанные катализаторы промоторы яды носители главные методы исследования катализаторов теория промежуточных соединений мультиплетная теория электронные факторы в гетерогенном катализе теория пересыщения и теория ансамблей (читает акад. А. А. Баландин). [c.228]

    В табл. 1.30 и 1.31 суммированы литературные данные по гидрированию бутадиена-1,3 и пентадиена-1,3 на металлических, оксидных и металлокомплексных катализаторах. При обсуждении этих данных следует учитывать, что соотношение продуктов при гидрировании диенового углеводорода зависит не только от типа применяемого катализатора, но и от условий проведения реакции (температуры, природы растворителя, если реакция осуществляется в жидкой фазе). Условия приготовления катализатора также сказываются иногда на соотношении продуктов реакции. Так, При гидрировании бутадигна-1.3 на Со-катализаторе, восстановленном при температурах ниже 300°С, отношение бутен-1/бутен-2 составляет 2,33. В то же время на данном катализаторе, восстановленном при температурах выше 400°С, это отношение равно 0,51. В случае металлических катализаторов кислотные свойства носителя также влияют на состав образующихся Продуктов реакцни [107]. Несмотря на это для выявления характерных закономерностей, присущих тому или иному типу катализаторов, мы будем пренебрегать влиянием некоторых факторов на соотношение продуктов реакции. [c.65]

    Особого внимания заслуживают выдающиеся работы Н. И. Кобозева по изучению процесса формирования активных центров из разрозненных молекул или атомов катализатора. В этих исследованиях для некоторых химических реакций получены сведения о минимальном числе атомов в агрегате, необходимых для появления у формирующейся частицы вещества каталитической активное Элементарная группа атомов, проявляющая каталитическую актив-ность Швана активным ансамблем . Молекулы, атомы или ионы вещества могут двигаться по поверхности носителя и группироваться в ансамбли, однако эти движения ограничены определенными и весьма небольшими областями миграции . Н. И. Кобозев (1939 г.) показал, что по изменению удельной активности в зависимости от заполнения поверхности носителя катализатором можно рассчитать величину ансамбля, т. е. число атомов в ансамбле и среднюю величину области миграции. Весьма интересна связь, устанавливаемая этой теорией между типичным гетерогенным катализом и действием сложных ферментных катализаторов. Теория ансамблей является одной из важных частей общей теории приготовления катализаторов. [c.8]

    Гроссе и Ипатьев [36] дают описание некоторых особенностей реакции каталитической дегидрогенизации парафиновых углеводородов в соответствую щие олефины. Эта реакция идет при употреблении в качестве катализаторов окисей некоторых металлов 4, 5 и б групп периодической системы элементов на таком специально приготовленном носителе, как глинозем. Катализаторы состоящие из окиси хрома на глиноземе, имеют особое значение. Они имеют длительный период работы и в высшей степени селективны. Превращение происходит в соответствии с общим уравнением дегидрогенизации  [c.700]

    Трегерные катализаторы готовят нанесением активного серебра па носитель (okh i. алюминия, карборунд, силикагель, пемза). Для приготовления трсгерпого катализатора чаще всего пропитывают носитель растворами некоторых соединений серебра (ианример, водным раствором нитрата серебря) с последующим посстановле-ние.м до металлического серебра. [c.560]

    Абсолютные значения удельной поверхности катализатора в целом, поверхность активного компонента и функция распределения размера пор определяются концентрацией активного компонента в катализаторе, а следовательно, и количеством пропиток. При определении числа пропиток надо учитывать, что носители с развитой пористостью быстро насыщаются вносимым реагентом и значительное количество пропиток здесь неэффективно. При обработке же малопористых носителей каждая пропитка приводит к некоторому увеличению содержания со ей (окислов) в катализаторе и полнопо насыщения долго не наступает. В. этом случае применение многократных пропиток целесообразно. Сказанное выше подтверждается данными о результатах пропиток при приготовлении никелевых, хромовых и кобальтовых катализаторов, на различных носителях (табл. . 2) [16]. [c.197]

    Указания, касающиеся методики приготовления коллоидных катализаторов (благородных металлов), содержатся в работе Рампино и Норда [116]. Приготовление некоторых палладиевых катализаторов на носителях описано, Мозинго [117]. Ниже приводится методика получения палладиевого катализатора на сульфате бария, широко известного под названием катализатора Ро-зенмунда. [c.83]

    Заслуживают упоминания некоторые другие методы, обеспечивающие высокую степень дисперсности. Аэрогельный метод [26—30] получения дисперсных носителей или нанесенных металлов уже обсуждался (см. раздел 5.2.2). Использование органических комплексов переходного металла, связанных с различными металлами, является особенно ценным в приготовлении полиметаллических систем с хорошо известной структурой [64, 65]. Например, нанесенный кобальтродиевый катализатор готовили пропиткой оксида кремния раствором [СогНЬ](СО) 12 в гексане с последующим разложением и восстановлением [64]. Сильное взаимодействие между металлами определяется каталитическими свойствами биметаллических систем, которые существенно отличаются от свойств чистых металлов [64]. Данный препаративный метод полезен при изучении эффектив- [c.56]

    Подобно тому как соседние атомы внеиндексных заместителей оказывают влияние на Qab, Q d, Qad, Qb , так и на величины Qak, Qbk, Q k и Qdk должны оказывать влияние не только внеиндексные заместители, но и атомы катализатора, соседние с активным центром, а именно природа, число и расположение последних. От этого, в частности, зависит хорошо известное в каталитической химии влияние способов приготовления, носителей и в некоторых случаях — добавок. [c.210]

    Y-AI2O3 получают прокаливанием А1(0Н)з при 500—700°С. По прочности он уступает корунду, но является более пористым материалом. Объем его составляет 50—70%, удельная поверхность — 120—150 м /г. Y-AI2O3 выступает не только в роли носителя, но и катализатора в ряде процессов конденсации, дегидратации, гидролиза (см. табл. 1). Известно большое число способов приготовления активной Y-AI2O3 [115—119]. Рассмотрим некоторые из них. [c.138]

    Гидрирование окислов углерода с высокой скоростью осуществляется на катализаторах, приготовленных на основе металлов Vni группы [63], но в производстве водорода метанирование обычно проводят на никелевом катализаторе. В состав катализатора входят также носитель (различные формы окисей алюминия и кремния) и промотирующие добавки (например, MgO, rjOg). В большинстве случаев используются катализаторы в виде таблеток. Характеристика некоторых никелевых катализаторов приведена в табл. 24 [64]. [c.96]

    Предложено много катализаторов гидрокрекинга. Активными компонентами их являются некоторые соединения металлов VI и УП1 групп периодической системы элементов Д. И. Менделеева. Довольно часто выбор останавливают на катализаторах, содержащих сульфиды никеля и вольфрама или иикеля и молибдена, нанесенных на крекирующие пористые носители (окись алюминия, алюмо силикаты) и активированных галогеном (фтором, хлором). Соотношение компонентов — гидрирующего, расщепляющего кольца и гидроизомеризующего — в катализаторе должно быть таким, чтобы достигался, требуемый результат. Нежелательна избыточная крекирующая активность катализатора во избежание усиленного образования газов и легких жидких продуктов. Подбору катализаторов, пригодных для изменения структуры углеводородов в нужном направлении, уделяется большое внимание. Активность и селективность (по приросту индекса вязкости) зависят не только от состава катализатора, но и от способа его приготовления. Ниже указаны выход и свойства масел, полученных глубокой гидроочисткой (гидрокрекингом) деасфальтизата (плот- [c.280]

    Предйожены многочисленные другие рецептуры катализаторов, которые с успехом применяются в промышленности [16]. Состав некоторых из этих катализаторов приведен в табл. 5. Из табл. 5 можно сделать вывод, что вполне приемлемые катализаторы могут значительно различаться по содержанию окиси кобальта и трехокиси молибдена, атомному отношению кобальт молибден, суммарному весу обоих металлов и удельной поверхности. Сопротивление раздавливанию изменяется в весьма широких пределах, но во всех случаях оказывается достаточно высоким для того, чтобы катализатор противостоял истиранию в промышленных реакторах. Различаются также катализаторы по составу носителя и методу приготовления эти различия характеризуются насыпным весом катализатора, изменяющимся в широких пределах. Стоимость катализаторов (в ценах 1958 г.) изменяется от 1380 до 2230 долл. на объема реактора. Эти пределы достаточно широки, но стоимость катализатора не имеет первостепенного значения в экономике [c.144]

    Адсорбционные свойства древесного и костяного угля известны давно. Ловиц (1785) применял уголь для обесцвечивания растворов винной кислоты. Фигье (1811) обнаружил, что костяной уголь тоже обладает заметной обесцве-чивающей способностью. Адсорбционные и каталитические свойства активных углей растительного и животного происхождения, приготовленных различными способами, изменяются в зависимости от размера пор и содержания посторонних веществ. Структура и примеси посторонних веществ влияют на применение углистых материалов в каталитических реакциях. Некоторые активированные угли могут служить адсорбентами для газов и жидкостей и в известной степени катализаторами. Например, в присутствии кислорода некоторые виды угля легко окисляют сероводород другие окисляют окись углерода. Многие угли пригодны для хлорирования, восстановления, дегидрогенизации и полимеризации. Аналогично поведение геля кремневой кислоты и цеолитов. Проницаемость и пропитываемость являются другими факторами, с которыми следует считаться при применении углистых материалов как носителей для катализаторов. Отверстия пор или капилляров неактивированного угля закрыты пленками, состоящими из ориентированных, насыщенных атомов. Обычно такие пленки образуются в результате адсорбции смолистых веществ во время процесса коксования. У активированного угля полости образуются системами атомов, в которых на один ненасыщенный активный углеродный атом приходится двенадцать неактивных углеродных атомов [342]. Различные виды углей имеют поры различного размера. Например  [c.480]

    Публикации (в основном патенты), касающиеся приготовления, свойств, активности и стабильности гетерогенных катализаторов пиролиза появились в литературе с начала 60-х годов. Наибольший интерес и значение уже в тот период получили исследования по каталитическому пиролизу, выполненные в Московском институте нефтехимической и газовой промышленности им. И. М. Губкина под руководством Я. М. Пауш-кина и С. В. Адельсон [375]. В качестве активных компонентов катализаторов для пиролиза в публикациях предлагаются соединения многих элементов периодической системы, в большинстве случаев оксиды металлов переменной валентности (например, ванадия, индия, марганца, железа, хрома, молибдена и др.), оксиды и алюминаты щелочных и щелочноземельных металлов (большей частью кальция и магния) и редкоземельных элементов, а также кристаллические или аморфные алюмосиликаты [376]. Обычно активные вещества наносят на носители, в качестве которых применяют пемзу, различные модификации оксида алюминия или циркония, некоторые алюмосиликаты. Сведения о работах по исследованию процесса каталитического пиролиза, опубликованные до 1978 г., систематизированы в обзоре [377]. [c.180]

    Некоторая часть первых исследований поверхиости катализаторов в инфракрасной области [23] была проведена на пористом стекле, и ряд последующих экспериментаторов использовали его (марка Викор) в качестве адсорбента или носителя для металлов [6, 24—26]. Лефтин и Холл [27] использовали прозрачные массивные образцы силикагеля и алюмосиликатного катализатора и прозрачную у-окись алюминия, приготовленную Пери и Ханнаном [28]. Затруднением при изготовлении этих прозрачных образцов является то, что желаемый результат, по-видимому, достигается только методом проб и ошибок. Преимуществами этих образцов перед порошками являются большая легкость в обращении с ними и меньшее рассеяние света. Кроме того, поскольку один и тот же образец может быть использован в исследовании с несколькими адсорба-тами просто с промежуточной окислительной регенерацией между циклами опытов, возможно проведение количественного сравнения. Пропитка образцов для получения металлических катализаторов на носителе ограничена количеством металла, которого можно на-— нести не более 10 вес.%. В противном случае, как это было ука-Ср зано Эйшенсом и Плискином [1], частицы металлов приобретают тенденцию к росту, что вызывает дополнительное поглощение и рассеяние спета. [c.17]

    В некоторых работах исследовались медные катализаторы, нанесенные на различные носители. Последние по-разному влияют на активность контактов. Так, например, силикагель является инертным носителем, а А12О3 снижает активность меди в реакции гидрирования этилена [286]. Авторы объясняют это тем, что окись меди, нанесенная на 510г, легко восстанавливается до металла нагреванием в водороде при 200° С, тогда как с окисью алюминия СиО химически соединяется во время приготовления катализатора и поэтому труднее восстанавливается водородом, вследствие чего такой контакт обладает более низкой активностью. [c.97]

    Существуют различные способы приготовления катализаторов с цеолитами. Митташ, Шнейдер и Моравитц [292] приготовили платиновый цеолит для гидрогенизации органических соединений, нагревая искусственный цеолит до почти полного удаления воды полученный продукт вымачивали в растворе хлорной платины, а затем сушили и повторно нагревали, после чего образующаяся растворимая соль, например хлористый натрий, удалялась промыванием Или иной обработкой. Платину и осмий в силикат можно ввести методом замены щелочного металла силиката алюминия для этого силикат вымачивают в растворе соли платины или осмия. Осмиевый цеолит готовят обычно вымачиванием цеолита в растворе осмиата калия и нагреванием. Искусственные или природные цеолиты вначале превращают в цеолит аммония, после чего непосредственно или предварительно нагретый, он дает цеолит осмия при обработке осмиатом калия. Относительно других методов приготовления обменивающих основание продуктов можно получить сведения в некоторых патентах [362]. Цеолиты типа силиката алюминия или двойного силиката алюминия, применяемые при восстановлении карбонильных соединений в виде носителей катализаторов, также описаны в литературе [362]. Силикаты, обменивающие основания, готовят действием щелочного раствора окиси алюминия на раствор щелочного силиката в присутствии кислоты, которая нейтрализует раствор [196], при этом содержание двуокиси кремния изменяется в зависимости от взятого количества силиката и кислоты. Конечный продукт перед сушкой или после нее обрабатывают гидратом окйси натрия, углекислым натрием или бикарбонатом натрия. [c.487]

    В каталитических реакциях, при которых глинозем мсжет быть активен, он заменяется алундом, т. е. искусственно приготовленным корундсд . Сналлинг [378] считает алунд подходящим носителем для медного катализатора при приготовлении формальдегида из метилового спирта. Паннет [301] рекомендует пользоваться алундом как носителем для пятиокиси ванадия при приготовлении малеинового ангидрида. В некоторых случаях активность никеля, как дегидрогенизирующего катализатора, можно понизить осаждением металла на глиноземе, применяемом в качестве носителя [329, 430] в этом случае катализатор по своему действию похож на палладий и платину. Зелинский и Комаревский [430] готовили катализатор следующим образом  [c.500]

    Ряд нанесенных Мо катализаторов был приготовлен по реакции между Mo Ig и ОН группами ка носителях по методу фагуэраса и др. /10/. Реакция легко протекает в эфирных растворах. Поверхностная структура этого катализатора может быть более сложной по сравнению с другими нанесенными Мо катализаторами вследствие существования димеров Mo Ig в растворе. Каталитическая активность для некоторых реакций не превышала активность пропиточных катализаторов, за исключением реакции метатезиса пропилена. [c.101]


Смотреть страницы где упоминается термин Приготовление некоторых катализаторов и носителей: [c.28]    [c.302]    [c.17]    [c.58]    [c.162]    [c.327]   
Смотреть главы в:

Краткое руководство к практикуму по химии нефти -> Приготовление некоторых катализаторов и носителей




ПОИСК





Смотрите так же термины и статьи:

Катализатора носители

Носители приготовление

Приготовление катализаторов на носителях



© 2025 chem21.info Реклама на сайте