Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролитическое окисление металлов и сплавов

    При электролитическом рафинировании свинца теллур и селен переходят в анодные шламы вместе с драгоценными металлами, сурьмой, висмутом и т. д. Обычно такие шламы перерабатывают пирометаллур-гическим путем. Например, на заводе Ла Оройя (Перу) в результате плавки шлама с другими отходами и последовательного окисления конвертированием получают теллурсодержащий серебряно-свинцовый сплав, который обрабатывают в жидком виде содой и селитрой. Богатый теллуром шлак выщелачивают горячей водой раствором обрабатывают обогащенные селеном пыли. После накопления 30 г/л Se и 60—80 г/л Те раствор нейтрализуют серной кислотой. Теллуристую кислоту отфильтровывают, а из раствора после подкисления соляной кислотой осаждают селен двуокисью серы. Теллуристую кислоту растворяют в щелочи и электролизом выделяют теллур [4]. [c.144]


    Электролиз ведут из растворов, подкисленных серной (35—100 г/л) или хлорной кислотой [98 ] и содержащих сульфат аммония или натрия (40—70 г/л). Эти добавки, по-видимому, препятствуют окислению поверхности катода либо способствуют растворению окислов с катода и тем самым облегчают восстановление рения 1 115]. В качестве катода используют тантал или нержавеющую сталь, в качестве анода — платину. Рений при электролизе получается в виде порошка (насыпная масса 8 г/см ) или чешуек. Электролитный рений, полученный даже из растворов перрената калия, по чистоте не уступает рению, полученному восстановлением перрената аммония. Крупнокристаллическая структура электролитного рения мешает его переработке на компактный металл металлокерамическим способом. Более мелкий порошок (98% < 56 мкм) можно получить при электролизе с применением тока переменной полярности (импульсный ток), а также на установке с вращающимся барабанным катодом [89, с. 101] но и такие порошки не годятся для металлокерамики. Порошок рения,полученный электролитическим путем, применяется для приготовления сплавов и других целей. [c.314]

    В случае электролиза вольфрамсодержащих растворов возможно образование окисных соединений вольфрама на катоде. Анодное окисление вольфрама также сопровождается возникновением окислов на электроде. Не исключено образование окисных соединений в процессе электролитического осаждения вольфрамсодержащих сплавов. Поэтому целесообразно рассмотреть некоторые свойства простых и сложных окислов описываемого металла. [c.24]

    Химическая устойчивость чистого металлического алюминия значительно выше, чем железа. Алюминий не корродирует в воде, в слабокислых растворах, не ржавеет во влажной атмосфере. В щелочных растворах алюминий растворяется. Сравнительно высокая химическая устойчивость алюминия объясняется не малой реакционной способностью самого металла, который стоит раньше железа в ряду напряжений, а образованием на поверхности алюминия тонкой малопроницаемой окисной пленки, защищающей металл от дальнейшего разрушения. Защитные окисные пленки на алюминии и его сплавах получают и искусственным путем — электролитическим окислением или анодированием. Однако под длительным воздействием атмосферы все же происходит постепенное разрушение алюминия. Влага и различные загрязнения, попадая на слабые места защитной пленки, постепенно разъедают ее и образуют в ней углубления. В этих углублениях скапливается грязь, на поверхности металла появляются мелкие точки, затем впадины, блеск теряется, и цвет становится неравномерным. Ход разрушения алюминия зависит от атмосферных условий и степени чистоты самого металла. Наибольшей химической устойчивостью обладает чистый алюминий различные примеси и легирующие добавки понижают сопротивляемость металла химическому разрушению, ослабляя структуру защитной окисной пленки, образующейся на его поверхности. [c.389]


    Иридий при анодной поляризации в растворах соляной кислоты более стоек, чем платина [29]. Так, при электролизе 32%-ной соляной кислоты доля тока, расходуемого на растворение платинового анода, составляет около 5%, а при использовании сплава из платины с иридием снижается до 0,9% при содержании в сплаве 10% иридия [13]. Однако при циклической катодно-анодной поляризации смешанных платиноиридиевых электролитических осадков с содержанием иридия от 10 до 38,5% наблюдалось уменьшение иридия в электролитическом осадке [30]. Исследовалось поведение электролитически осажденных смешанных осадков платиновых металлов в процессе окисления метанола [31]. [c.143]

    Наиболее важное значение имеет выделение включений и фаз из металлов и сплавов. Электролитические методы для окисления органических веществ и растворения минералов в аналитической химии используют редко, [c.266]

    Реакция вытеснения (замещения). Из реакций вытеснения наиболее типичны в конденсированных системах металлургические реакции осаждения того или другого металла. Согласно ряду активностей, каждый вышестоящий металл вытесняет из соли нижестоящий металл. Выражением этого является бинарный разрез — стабильное сечение тройной или более сложной системы. От степеней стабильности этого разреза зависят степень сдвига равновесия и выход реакции, а следовательно, чистота получаемого металла. Минимальное, так сказать законное , количество примесей определяется составом двойной эвтектики в случае сплавов, расположенных на бинарном сечении, или тройной — на любом другом произвольном сечении. Примеси, входящие в состав двойных и тройных эвтектик, подлежат удалению отгонкой, избирательным окислением (выжиганием), электролитическим осаждением и др. [c.157]

    Сплавление металлических компонентов почти всегда необходимо проводить в вакууме или инертной атмосфере аргона или гелия. В настоящее время часто применяются тугоплавкие тигли из окислов бериллия, циркония или тория в отдельных случаях пользуются и тиглями из окиси алюминия. Для предотвращения окисления требуется создание очень хорошего вакуума. ЕсЛи один из. металлов весьма летуч, то, для сведения к минимуму потерь из-за дестил-ляции можно применять атмосферу из хорошо очищенного аргона. Лучше всего пользоваться индукционным нагревом это особенно желательно при сплавлении металлов, сильно различающихся по удельному весу, так как при этом происходит их более полное перемешивание. В случае легкоплавких металлов, например свинца или висмута, применяются электролитические процессы. Так, тетрахлорид урана растворяли в расплавленной смеси хлоридов натрия и кальция (т. пл. 750°), затем смесь подвергали электролизу в ванне со стальным катодом, покрытым слоем жидкого свинца или висмута [2]. Для получения ртутных амальгам необходимо применять очень чистый металлический уран, приготовленный разложением гидрида. Некоторые сплавы были случайно получены при одновременном восстановлении тетрафторида урана и фторидов других металлов. Но этот метод не рекомендуется для систематического изучения, так как при нем затруднительно заранее определить конечный состав и структуру сплавов. [c.148]

    При нанесении декоративных покрытий на алюминий и его сплавы большое внимание уделено разработке промышленного метода, основанного на предварительном нанесении тонкого цинкового покрытия. Такое покрытие предохраняет основной металл от окисления на промежуточной стадии между очисткой и нанесением требуемого электролитического покрытия [51, 52, 53]. [c.331]

    Процесс растворения металлов и сплавов в кислых средах принято описывать формулой Ме - Ме (г+) + 1е. Однако электролитическое окисление металлов может принимать иные формы, когда при окислении материала образуется стойкий в данном электролите оксид. В этом случае окисляемый материал становится пассивным, т. е. покрывается слоем пассивирующей пленки. Если ДJ я такого материала построить анодную поляризационную кривую, то она примет вид, показанный на рис. 1.4.12. Когда плотность тока, приложенного извне, превысит порог критической плотности тока, произойдет скачок потенциала, и кислород начнет выделяться на поверхности материала. При потенциале, превышающем точку А (рис. 1.4.12), металл начнет покрываться слоем оксидной пленки — пассивироваться. В интервале потенциалов между точками А и В гальва-ностатический анализ, используемый при оценке коррозионной стойкости сталей и сплавов, становится неприменим, и для анализа состояния материалов принято использовать потенциостатический метод, т. е. при анализе в этой области принято задавать не ток, а потенциал и наблюдать изменение плотности тока в образце. [c.71]

    ТАНТАЛ (Tantalum назван по имени героя древнегреческой мифологии Тантала) Та — химический элемент V группы 6-го периода периодической системы элементов Д. И, Менделеева, п. н. 73, ат. м. 180,9479. Т. открыт в 1802 г. Экебергом. Природный Т. состоит из двух стабильных изотопов, известны 13 радиоактивных изотопов. Т.— металл серого цвета со слегка синеватым оттенком, т. пл. 2850° С, твердый, очень устойчив к действию кислот и других агрессивных сред, превосходит в этом даже платину. Получают Т. из тантало-ниобиевых руд. Т. в соединениях проявляет степень окисления +5. Используется для изготовления химической посуды, фильер в производстве искусственного во-токна, в хирургии для скрепления костей при переломах, для изготовления жаростойких, твердых и тугоплавких сплавов для ракетной техники и сверхзвуковой авиации, для изготовления электролитических конденсаторов, выпрямителей и криотронов, нагревателей высокотемпературных печей, арматуры электродных ламп, в ювелирном деле и др. [c.244]


    Есть очень. много комплексных галогенидов платиновых металлов с координационным числом 4 (при степени окисления +2) и 6 (при степени окисления +3 и выше) K2Pt l4, К2Р1С1б, [Р1(> Нз)б]Си и др. Самородная платина обычно встречается в природе с примесью других платиновых металлов. Из таких спланов делают химическую посуду, проволоку, сетки и т. д. Платина хорошо впаивается в стекло, тугоплавка, мало испаряется в вакууме, хорошо прокатывается и протягивается в проволоку, устойчива в химическом отношении. Все это послужило тому, что она нашла широкое применение в электровакуумной промышленности в начальном этапе ее развития. Но из-за дороговизны и дефицитности теперь она заменяется другими материалами. Широко используется как катализатор в химических реакциях, для изготовления термопар Р1—Р с 10% РЬ, с помощью которых измеряют температуру до 1500° С только в окнслитель 10й среде. В атмосфере водорода места контакта таких термопар разрушаются. Из сплава платины с 10% иридия изготовляют. эталоны длины и массы. Платину применяют в обмотках электрических печей, в ювелирном деле, в зубоврачебной технике, для анодов в электролитических ваннах. [c.441]

    Наконец, необходимо отметить амальгамы, о существовании которых упоминалось сравнительно давно. Рзэ цериевой группы образуют амальгамы легче, чем элементы иттриевой группы. Амальгамы можно получать замещением щелочных металлов редкоземельными металлами из насыщенных спиртовых растворов безводных хлоридов [2031], прямым растворением редкоземельных металлов и ртути или выделением на ртутном катоде при электролизе. Последний метод широко применяется при электролитическом отделении 8т, Ей и УЬ от других элементов. Амальгамы с содержанием до 5% редкоземельного металла еще жидки, но при дальнейшем увеличении его концентрации постепенно переходят в пастообразные смеси. Вакуумной отгонкой можно почти полностью освободить сплав от ртути. Остаточные количества ртути удерживаются довольно прочно, особенно для тяжелых рзэ. При нагревании нлн стоянии на воздухе амальгамы имеют тенденцию к разрушению, которое при соприкосновении с кислородом сопровождается быстрым окислением. [c.29]

    Ввиду важности защиты высокотемпературных молибденовых сплавов от окисления желательно измерять толщину металлических покрытий на таких сплавах. В связи с этим для проверки метода И были выбраны хромовые покрытия на молибдене [165]. Тонкие слои наносились испарением хрома в вакууме, а толстые — электролитическим осаждением этого металла на молибденовые диски, служившие подкладкой. Рентгеновская трубка с вольфрамовой мишенью работала при 50 кв и 50 ма, за исключением случаев, когда скорость счета превышала 3000 имп1сек. В этих случаях ток трубки уменьшали до 5 ма и снова выверяли скорость счета. В качестве детектора был при- [c.169]

    Окисленные никелевые руды либо плавят с восстановителем (коксом) в шахтных или электрических печах на ферроникель (сплав железа с никелем), либо, добавляя наряду с восстановителем сульфидизатор (гипс, пирит), ведут плавку на никелевый штейн. Последний состоит, в основном, из сульфидов никеля и железа, а также содержит-сульфид кобальта. Штейн продувают в конвертерах воздухом, окисляя железо и часть серы, и получают никелевый файнштейн, представляющий собой, в основном, сульфид никеля. После охлаждения и измельчения его обжигают в печах кипящего слоя и трубчатых печах до закиси никеля. Последнюю плавят с восстановителем на металлический никель. Металлический никель либо является готовым продуктом (как правило, он имеет относительно невысокую чистоту), либо из него отливают аноды, идущие на электролитическое рафинирование. Аноды, полученные при переработке окисленных никелевых руд, отличаются от анодов, полученных из сульфидных руд, значительно меньшим содержанием меди (обычно не более 0,5—1%) и отсутствием драгоценных металлов. В остальном они имеют аналогичный состав. [c.69]

    Получение меди из окисных руд проще ее восстанавливают углем. Полученная таким образом из руды медь называется черновой или сырой. Она содержит до 2—3% примесей, содержащих элементы Zn, Fe, Ni, Pb, Ag, Au и т. д. Эти примеси ухудшают качество самой меди, поэтому ее очищают, или рафинируют. Рафинирование меди производят огневым или электролитическим способом. При огневом способе черновую медь сплавляют в токе воздуха. При этом часть меди окисляется до полуокиси меди ugO, а последняя отдает кислород на окисление неблагородных металлов. Избыток ugO восстанавливают углем. Очищенная огневым способом медь, содержащая до 0,5% примесей, идет на изготовление бронзы, латуни и других сплавов. Она непригодна для изготовления электрических проводов, так как в ней содержатся примеси, ухудшающие электропроводность меди. При электролитическом рафинировании [c.424]

    В связи с повышенной хрупкостью разрабатываются специальные способы переработки, обеспечивающие сохранность углеродного волокна. На волокно наносится один или несколько металлов химическим или электрохимическим способом, например [108] серебро, путем обработки предварительно окисленного волокна раствором цианистого серебра. Электролитическим методом на углеродное волокно можно нанести медь, кобальт, никель, свинец, сплав свинца и олова [109]. Алюминий наносят способом испарения-конденсации в вакууме при термическом разложении триизо-бутилалюминия. При дальнейшей переработке покрытых волокон методом горячего прессования следует применять по возможности меньшее давление и максимальную температуру. [c.308]

    Первые опыты были проведены Л. А. Кочановой на монокристаллах цинка, покрытых пленкой олова и сплавами олова со свинцом [107—109]. Монокристаллические образцы (чис-тоты 99,99% 7п) длиной 15 л л и диаметром 0,5—0,6. ил подвергались растяжению с постоянной скоросг Ю деформации е = = 10—15% мин . Температура опытов варьировалась от комнатной до 400° С и поддерживалась в процессе опыта постоянной с точностью до +5°. Для предотвращения окисления при повышенной температуре образцы окружались толстым слоем графитового порошка. Оловянное покрытие толщиною — 5 мк наносилось на поверхность исследуемого монокристалла электролитически. Для получения на цинковых образцах оловянно-свинцового покрытия с заданным содержанием компонентов на поверхность монокристалла попеременно наносились электролитические слои олова и свинца в определенном весовом соотношении. Монокристаллы с нанесенным на них слоем легкоплавкого металла помещались в трубку, наполненную тонкодисперсным порошком графита, и выдерживались перед опытом в течение 4 час. при 250° С. [c.148]

    Приготовление никелевых сплавов — сложная операция. Трудности вызваны тем, что высокая температура плавления никеля обусловливает высокую температуру печи, и сам никель способен при высоких температурах легко окисляться, насыщаться газами, растворять в себе углерод, кремний и некоторые другие элементы, вследствие чего сплавы загрязняются этими примесями, резко ухудшаюнщми их свойства. Даже весьма чистый электролитический никель неудобен для плавки, так как он часто содержит остатки сернокислых солей и, являясь до некоторой степени пористым, окисляется и переходит в сплавы в окисленном состоянии. Наиболее подходящий для изготовления сплавов никель получается разложением карбонила иикеля в виде скорлуповатых шариков плотного сложения, легко растворяющихся в жидких металлах. [c.640]


Смотреть страницы где упоминается термин Электролитическое окисление металлов и сплавов: [c.63]    [c.6]    [c.538]    [c.151]    [c.245]    [c.279]    [c.170]    [c.151]    [c.455]    [c.485]    [c.630]   
Смотреть главы в:

Методы разложения в аналитической химии -> Электролитическое окисление металлов и сплавов




ПОИСК





Смотрите так же термины и статьи:

Металлы окисление

Металлы сплавы

Металлы электролитическое

Металлы электролитическое окисление

Окисление электролитическое

Сплавы и металлы металлов



© 2025 chem21.info Реклама на сайте