Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система мышьяк—селен—теллур

    В системах мышьяк—сера— иод и мышьяк—селен—иод также преобладают направленные ковалентные связи. Области стеклообразования в системах мышьяк—сера (теллур)—иод представлены на рис. 7 [15] в системе мышьяк—селен—иод—на рис. 8 [c.11]

    Гомоцепные полимеры будут рассмотрены в том порядке, в каком находятся в периодической системе составляющие их элементы. Насколько можно судить но имеющимся литературным данным, снособностью образовывать гомоцепные полимеры отличаются следующие элементы бор, углерод, кремний, германий, олово, фосфор, мышьяк, сурьма, висмут, сера, селен и теллур. [c.328]


    Система мышьяк—селен—теллур [c.84]

    В различной степени проявляется металлизация химических связей в системах мышьяк—селен—висмут и мышьяк—селен— теллур. В этих трехкомпонентных системах два компонента являются элементами одной и той же группы периодической системы. При введении в систему мышьяк—селен аналога мышьяка—висмута вследствие нарастания степени металлизации химических связей получена очень небольшая область стеклообразования (рис. 14) [21]. При введении в селениды мышьяка [c.14]

    Следует отметить, что характер поведения теллура в двух-и трехкомпонентных системах существенно различается. В то время как в бинарных теллуридах мышьяка металлизация химических связей проявляется в сильной степени, затрудняя стеклообразование, в трехкомпонентных системах с участием теллура мышьяк—селен—теллур, мышьяк—германий—теллур, мышьяк—кремний—теллур [8] и других — получены сравнительно большие области стеклообразования. К сожалению, мы не располагаем в настоящее время надежными методами количественной оценки ковалентной и ионной составляющих химических связей, а также степени металлизации ковалентных связей и вынуждены ограничиваться лишь качественными сопоставлениями. [c.14]

    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]


    Структура элементных полупроводников подчиняется так называемому правилу октета , согласно которому каждый атом имеет (8 — №) ближайших соседей, где № — номер группы периодической системы, в которой находится данный химический элемент. Например, координационные числа в полупроводниковых модификациях углерода, кремния, германия, олова равны четырем (8—IV), в кристаллах фосфора, мышьяка, сурьмы — трем (8—V), а в полупроводниковых сере, селене, теллуре — двум (8—VI). [c.341]

    Металлы, а также их окиси и сульфиды, в особенности металлов V или VI групп периодической системы, галогениды металлов фосфор, сера, селен, теллур, углерод, мышьяк, сурьма, никель, кремний, а также этилен, бензол, хлороформ, бромиды, хлориды, хлористый водород, бромистый водород, хлор, бром [c.330]

    Первые две группы Периодической системы содержат только металлы, Первый неметалл — бор — появляется в П1 группе в IV группе их уже два (углерод и кремний) в V группе три (азот, фосфор, мышьяк) в VI —четыре (кислород, сера, селен, теллур) в VU — пять (фтор, хлор, бром, иод, астат), [c.12]

    В присутствии цеолитов в поливалентной катионной и аммонийной форме с диаметром эффективных полостей 6—15 А подвергали реакции трансалкилирования смесь ароматических углеводородов, содержавшую С и толуол 137]. В качестве матрицы использовали окись алюминия (20 вес.%). Катализаторы содержали от 0,05 до 5 вес.% металлов VHI группы периодической системы элементов. Для усиления селективности действия катализатора вводили мышьяк, сурьму, висмут, селен, теллур или их комбинацию. Например, применяли декатионированный цеолит типа Y (или морденит), содержащий платину и мышьяк (на 1 атом платины 0,4 атома мышьяка). Реакция может протекать в газовой или жидкой фазе в среде смеси толуола и 1,2,4-триметилбензола при 450—500 °С, 35 кгс/см , отношении На углеводороды 8—10 1, объемной скорости 2 ч" . Анализ полученных продуктов указывал на происходящий процесс трансалкилирования, сопровождающийся высоким выходом ксилола, и на отсутствие неароматических углеводородов. [c.127]

    Способность образовывать полимерные молекулы достаточно ясно выражена у таких элементов, как бор, углерод, кремний, фосфор, сера, мышьяк, германий, селен, сурьма, висмут и теллур. Среди всех элементов периодической системы углерод выделяется своей уникальной способностью образовывать необычайно длинные цепи карбоцепных полимеров, остальные перечисленные выше элементы обладают этой способностью в значительно меньшей степени. Способиость образовывать достаточно прочные гомоцепные полимеры зависит от прочности связей атомов данного элемента друг с другом. [c.325]

    Необычайное разнообразие типов стекол, обусловленное сочетанием разных стеклообразующих компонентов, а отсюда — чрезвычайно широкий диапазон свойств этих систем, является одной из основных причин трудности понимания структуры стекла (в широком смысле этого слова) и объяснения поведения и различных свойств разнообразных стекол. Действительно, стеклами являются и плавленый кварц, и различные оксидные (содержащие окислы) соединения — силикатные, фосфатные, боратные, свинцовые и т. д., и системы, не содержащие кислорода, на основе соединений мышьяка, сурьмы с серой, селеном, теллуром (халькогенидные стекла), а также различные высокополимеры и полимолекулярные структуры на основе органических соединений. Стеклообразные системы могут быть одно-, двух- и многокомпонентными. [c.5]

    Мы рассматривали образование молекулярных со-единений из молекул акцепторов, содержащих атом третьей группы периодической системы (бор, алюминий, галлий, индий, таллий), и молекул доноров, содержащих либо атом пятой группы (азот, фосфор, мышьяк), либо атом шестой группы периодической системы (кислород, сера, селен, теллур). Тепловые эффекты таких реакций присоединения зависят главным образом от действительной силы атомов-доноров или атомов-акцепторов. Здесь, однако, сказывается влияние трех факторов. Первый, наиболее понятный фактор — это стерические затруднения, возникающие между атомами, не связанными друг с другом. Вторым фактором является энергия, необходимая для перестройки молекулы акцептора или донора, т. е. для подготовки к образованию координационной связи. Под этим подразумевается энергия, необходимая для изменения гибридного состояния атома, а также, в случае молекулы акцептора, энергия, необходимая для разрыва lt-связи. Третий фактор состоит в возможности образования дополнительной тс-связи в молекулярных соединениях. Это могут быть или — , -связь, или, возможно, - (псевдо)-связь, когда в реакции участвует ВНз. [c.160]

    В связи с принятым делением простых веществ на металлы и неметаллы можно, отметить, что в периодах слева направо усиливаются неметаллические свойства. В группах заметно увеличение неметаллических свойств снизу вверх (наиболее ярко это проявляется в VI, V ll VIII группах). Таким образом, первые группы периодической системы элементов не содержат неметаллов (если не считать Is-элементов, т. е. водород и гелий). Bill группе к неметаллам относится один бор, в IV группе — углерод и кремний, в V группе — азот, фосфор, мышьяк, в VI группе — кислород, сера, селен, теллур, в VII — фтор, хлор, бром, иод, астат. Простые вещества элементов VIII группы при обычных условиях газообразны, а в конденсированном состоянии образуют ковалентные кристаллы, которые уже при незначительном нагревании легко плавятся, а затем из жидкого состояния переходят в газообразное. [c.118]


    Итак, большая группа элементов, расположенных преимущественно в верхней средней части Периодической системы Д. И. Менделеева в главных подгруппах, может быть определена как полп-меры. Это бор, углерод, кремний, фосфор, сера, германий, мышьяк, селен, олово, сурьма, теллур, висмут и полоний [3, 54, 55]. [c.27]

    Если учесть, что разница между полупроводниками и диэлектриками только количественная, то можно сказать, что наличие только металлической связи между атомами исключает полупроводниковые свойства вещества (из этого не надо делать вывода о том,что в обычных условиях металлическая составляющая связи в полупроводниках полностью отсутствует). Для полупроводников типичны ковалентные и ионно-ковалентные связи. Музер и Пирсон отмечают, что в составе всех известных неорганических полупроводников всегда есть неметаллические атомы какого-либо из элементов IVA — VIIА подгрупп. Зонная теория не объясняет этого факта. Собственно полупроводниками являются элементарные вещества этих групп (углерод, кремний, германий, а-олово, некоторые модификации 4юсфора, мышьяка, сурьмы, селен, теллур). Сюда надо отнести и бор. Некоторые черты полупроводниковых свойств имеют сера и иод. Слева и снизу от этих элементов в системе находятся металлы, а выше и правее — типичные диэлектрики. [c.255]

    Теплопроводность чистых элементов зависит от их положения в периодической системе элементов. Элементы с низкой валентностью и с выраженными металлическими свойствами обладают повышенной теплопроводностью (например, металлы I и И группы). Лучшие проводники теплоты и электричества — элементы, атомы которых имеют во внешней оболочке не более двух электронов, а худшие — имеющие пять внешних электронов (мышьяк, сурьма и висмут). Полупроводниками будут селен и теллур, имеющие, по б внешних электронов. [c.337]

    Так как атом стремится дополнить свою электронную оболочку до оболочки ближайшего благородного газа, то неметаллы кристаллизуются так, чтобы число соседей равнялось 8—Ы, где N номер группы Периодической системы, к которой принадлежит данный элемент. Так, селен и теллур (группа VI) образуют кристаллические структуры со спиральными цепочками, где координационное число равно двум, а в структурах мышьяка, сурьмы и висмута (группа V) координационное число равно трем. [c.325]

    Сопоставление областей стеклообразования в тройных халькогенидных системах, образованных элементами IV—V—VI А групп периодической системы, проведено также в работе [6]. С целью получения стекол, пригодных для инфракрасной оптики, авторы [6, 8] определили области стеклообразования в системах германий—фосфор—сера, германий—фосфор—селен, германий—фосфор—теллур, германий—мышьяк—теллур, кремний—мышьяк—теллур, кремний—фосфор—теллур, кремний— сурьма—сера. Определили температуры размягчения, коэффициенты термического расширения, а также оптические свойства полученных стеклообразных сплавов. [c.17]

    При электролитическом наводороживании и травлении важную роль играют катализаторы, препятствующие процессу рекомбинации и моллизации ионов водорода. К ним относится ряд элементов V и VI групп периодической системы (фосфор, сера, мышьяк, селен, теллур, висмут). Добавление этих элементов или их соединений в раствор электролита в небольших концентрациях (порядка от 0,01 до 10 мг/л) замедляет рекомбинацию ионов, благодаря чему создаются условия для проникновения водорода внутрь металла. [c.25]

    Спектрометр оснащен также эффективной системой атомизации образцов в пламени и гидридным генератором (перевод металлов в гидриды), что позволяет определять следовые количества таких традиционных токсикантов, как ртуть, мышьяк, селен, теллур, сурьма и олово. Прибор имеет полностью программируемый самплер, высокоинтенсивные лампы с полым катодом (см. рис. П1.8) и программное обеспечение с удобными встроенными электронными таблицами. Уникальные лампы с полым катодом (см. раздел 1.1) сконструированы таким обра- [c.244]

    Все элементы в периодической системе подразделяют на а) металлы (наибольшее число) б) металлоиды (металлоподобные) — полупроводниковые элементы, а именно бор, углерод, кремний, фосфор, сера, германий, мышьяк, селен, олово, сурьма, теллур, иод (всего 12), расположенные между металлами и неметаллами по диагональному направлению в) неметаллы (15 элементов) металлоиды и неметаллы частично перекрывают друг друга г) инертные элементы — группа VIПА (6 элементов). Подразделение элементов на эти четыре типа имеет большое значение для аналитической химии. [c.13]

    Катионы 4-й аналитической группы осаждаются сероводородом в кислой среде при pH 0,5. Ее составляют элементы IV главной подгруппы (олово, свинец), V главной подгруппы (мышьяк, сурьма и висмут), VI группы периодической системы (молибден, вольфрам, селен, теллур), VII побочной подгруппы (технеций, рений), VIII группы семейств рутения и осмия. В 4 аналитическую группу входят также медь, серебро и золото, как элементы 1 побочной подгруппы таблицы Менделеева. 4 аналитическая группа подразделяется на три подгруппы подгруппу соляной кислоты, подгруппу сульфооснований и подгруппу сульфоангидридов. [c.31]

    Неметаллы в периодической системе расположены справа от диагонали бор — астат (см. табл. 30). Это элементы главных подгрупп III, IV, V, VI, VII и VIII групп. К неметаллам относятся бор В, углерод С (це), кремний Si (силициум), азот N (эн), фосфор Р (пэ), мышьяк As (арсеникум), кислород О (о), сера S (эс), селен Se (селен), теллур Те (теллур), водород Н (аш), фтор F (фтор), хлор С1 (хлор), бром Вг (бром), иод I (иод), астат At (астат). К неметаллам также относятся инертные газы Не — гелий, Ne — неон, Аг — аргон. Кг криптон, Хе — ксенон, Rn — радон. [c.323]

    В этом приборе (А-Аналист 800) — двухлучевая оптическая схема с дейтериевым корректором и встроенный компьютерноконтролируемый графитовый атомизатор (для испарения пробы при температуре 3000°С). Предусмотрен полный компьютерный контроль спектрометра и всех систем и приставок, а также возможность присоединения графитовой печи с проточно-инжек-ционной системой, позволяющей анализировать элементы в виде гидридов и в 100 раз снизить Си для таких важных приоритетных загрязнителей окружающей среды, как ртуть, мышьяк, сурьма, селен, теллур, висмут и олово. [c.239]

    Вторым фактором, затрудняющим стеклообразование в халькогенидных системах, является металлизация химических связей, увеличивающаяся сверху вниз в группах периодической системы. Металлизация проявляется, в частности, в делокализа-ции связей, строго направленных в случае ковалентных связей. Делокализация связей в пространстве сопровождается размыванием волновых функций, вследствие чего облегчается перераспределение компонентов стекла в критической области температур и увеличивается способность расплавов к кристаллизации. Так, в бинарных системах мышьяк—сера и мышьяк—селен, для которых получены большие области, стеклообразования, степень металлизации химических связей невелика. Резкое изменение характера связи наблюдается при переходе к теллу-ридам мышьяка. Вследствие нарастающей делокализации связей способность теллуридов мышьяка к стеклообразованию резко снижается. В системе мышьяк—теллур лишь в режиме жесткой закалки в стеклообразном состоянии получены сплавы двух составов — АзТе и ЛзТео.з и при самой жесткой закалке — АзгТез [18]. При замещении мышьяка на Сурьму и висмут в стеклообразном сплаве Аз Зез, применяя жесткую закалку расплавов, можно получить стекло состава АзЗЬЗез. Замена более 50 ат. % мышьяка на сурьму сопровождается кристаллизацией стекла. На висмут в стеклообразном сплаве АзгЗез мышьяк можно заместить лишь на 5 ат. % [19]. [c.12]

    Для ряда молекул, состоящих из атомов элементов первого и второго периодов, а такн<е для некоторых молекул, включающих фосфор, мышьяк, сурьму, серу, селен, теллур и галогены, в [193] были рассчитаны дипольные моменты. Расчет проводился в приближении точечных зарядов и с учетом поляризации атомов по методу Попла — Сегала (см. 2). Сравнение значений диполь-ных моментов, рассчитанных с использованием параметров систем М2, 02 и Попла — Сегала, с данными эксперимента не выявило преимущества какой-либо системы. Дипольные моменты молекул, состоящих из элементов второго периода, вычисленные с учетом атомной поляризации, находятся в удовлетворительном согласии с экспериментальными данными. Для соединений, содержащих атомы с -электронами, дипольные моменты получаются гораздо менее точными, что объясняется отсутствием -орбиталей в базисной системе. [c.78]

    Неметаллы в периодической системе расположены справа от диагонали бор — астат (см. табл. 34). Это элементы главных подгрупп Ш, ГУ, V, У1 VII и УП 115гупп. К неметаллам относятся бор В, углерод С (це), кремний 5 1 (силициум), азот N (эн), фосфор Р (пэ), мышьяк Аз (арсеникум), кислород О (о), сера 5 (эс), селен 5е (селен), теллур Те (теллур), водород Н (аш), фтор Р (фтор), хлор С1 (хлор), бром Вг (бром), йод I (Йод), астат А (астат). К неметаллам также относятся благородные газы Не — гелий. Не — неон, Аг — аргон. Кг — фиггт0н, Хе — ксенон, Rзl радон. [c.350]

    Для предсказания свойств простых веществ и соединений Д. И. Менделеев использовал следующий прием он находил неизвестные свойства как среднее а р н ф м е т 1 ч е с к о е нз свойств окружающих элемент соседей в периодической системе, справа и слева, сверху и снизу. Этот способ может быть назван методом Д. И. Менделеева. Так, например, соседями селена слева и справа являются мышьяк-и бром, образующие водородные соединения НзАз н НВг очевидно, селен может образовать соединение НгЗе и свойства этого соединения. (температуры плавления и кипения, растворимость в воде, плотность в жидком и твердом состояниях и т. д.) будут близки к среднему арифметическому из соответствующих свойств НзАз иЛВг. Так же можно определить свойства НгЗе как среднее из свойств аналогичных соединений элементов, расположенных в периодической системе сверху и снизу от селена,— серы и теллура, т. е. НгЗ н НгТе. Очевидно, результат получится наиболее достоверным, если вычислить свойства НгЗе как среднее из свойств четырех соединений НзАз, НВг, Нг5 и НДе. Данный метод широко применяется и в настоящее время для оценки значений свойств неизученных веществ. [c.38]

    Полупроводники — вещества, по электропроводности промежуточные между проводниками и диэлектриками (изоляторами). Их электропроводность зависит от температуры, увеличиваясь при ее повышении (отличие от металлов), от количества и природы примесей, воздействия электрического поля, света и других внешних факторов, К П. принадлежат бор, углерод (алмаз), кремний, германий, олово (серое), селен и теллур, карбид кремния Si соединения типа (индий — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один из элементов IV—VH групп периодич. системы Д. И. Менделеева, органические вещества (полицены, азоарома-тические соединения, фталоцианины, некоторые свободные радикалы и др.). К чистоте полупроводниковых материалов предъявляют повышенные требования напр., в германии контролируют содержание примесей 40 эле.ментов, в кремнии — 27 элементов. Содержание примесей не должно превышать 10 — 10- %. П. имеют большое практическое значение. [c.107]

    Следует остановиться еще на одном гибридном атомизаторе системе проволочное кольцо — пламя. Кольцо диаметром 4 мм из платиновой проволоки диаметром 0,5 мм установлено в керамическом держателе с электрическими контактами. К кольцу подводят электроэнергию с напряжением до 2,5 В, силой тока до 20 А. На кольцо наносят 1—40 мкл анализируемого раствора и сушат электронагревателем. Для сушки 40 мкл водного раствора требуется 2 мин. При ускорении сушки возможны потери определяемых элементов. После сушки кольцо быстро вводят в пламя и включают электронагрев на полную мощность. За время меньше 1 с температура кольца повышается до 1250°С, и происходит атомизация пробы в пламени. Записывают пик абсорбционного сигнала. Для получения ацетилено-воздушного пламени используют горелку со щелью длиной 8 мм и шириной 0,5 мм. Для введения кольца в пламя сконструировано электромагнитное устройство, которое одновременно включает электропитание кольца для атомизации, С одним платиновым кольцом можно сделать свыше 1000 определений. При испарении 40 мкл раствора достигнуты следующие пределы обнаружения (в мкг/мл) кадмий — 0,25, мышьяк—1,5, свинец — 4, сурьма—10 при испарении 10 мкл цинк—1, висмут — 20, теллур — 30, селен — 60, ртуть — 100. Щелочные и щелочноземельные металлы определяют по эмиссионным спектрам. Предел обнаружения (в нг/мл) при испарении 10 мкл раствора составляет литий — 0,06, натрий и стронций—10, цезий — 80, барий — 90, калий — 1000 [98]. [c.58]

    Так, например, соседями селена слева и справа являются мышьяк и бром, образующие водородные соединения НзАз и НВг очевидно, селен может образовать соединение НаЗе и свойства этого соединения (температуры плавления и кипения, растворимость В воде, плотность в жидком и твердом состояниях и т. д.) будут близки к среднему арифметическому из соответствующих СВОЙСТВ НзАз и НВг. Так же можно определить свойства НаЗе как среднее из свойств аналогичных соединений элементов, расположенных в периодической системе сверху п снизу от селена, — серы и теллура, т. е. НгЗ и НгТе. Очевидно, результат получится наиболее достоверным, если вычислить свойства НгЗе как среднее из свойств четырех соединений НзАз, НВг, НгЗ и НгТе. Данный метод широко применяется и в настоящее время для оценки значений свойств неизученных веществ. [c.68]

    Выше уже говорилось о том, что третичные амины (в отличие от четвертичных аммониевых солей с четырехсвязным азотом) не расщепляются вследствие быстрой самопроизвольной инверсии (рис. 21). Однако если перейти от азота к элементам третьего периода периодической системы, то такая колебательная инверсия становится гораздо менее быстрой известны оптически устойчивые производные трехвалентного фосфора Р ab , мышьяка As ab и сурьмы Sb ab . Хорошо исследованы оптически устойчивые производные трехвалеитной серы и прежде всего соли сульфония [S аЬс] Х+, сульфоксиды аЬ S—>0. В оптически активной форме получены аналогичные соли селения [Se аЬс]+Х- и теллурия [Те ab J X . [c.65]


Смотреть страницы где упоминается термин Система мышьяк—селен—теллур: [c.14]    [c.13]    [c.97]    [c.137]    [c.662]    [c.125]    [c.23]    [c.70]   
Смотреть главы в:

Химия стеклообразных полупроводников -> Система мышьяк—селен—теллур




ПОИСК





Смотрите так же термины и статьи:

Теллур

Теллуриты



© 2025 chem21.info Реклама на сайте