Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калия-бериллия фторид

    Важнейшим способом получения металлов ПА-подгруппы, имеющих малые алгебраические величины стандартных электродных потенциалов, является электролиз их расплавленных хлоридов (или других галогенидов) иногда для понижения температур плавления к ним добавляют хлориды щелочных металлов. Например, бериллий получают электролизом расплавленной смеси фторида бериллия и фторида натрия, кальций и стронций — электролизом смесей хлоридов и фторидов этих металлов. Магний помимо электролиза расплавленной смеси хлоридов магния и калия получают другими способами восстановлением доломита СаСОз-М СОз ферросилицием или кремнием, восстановлением оксида магния углем в электрических печах. Барий принято получать металлотермическим (алюминотермическим) способом. [c.294]


    Отгонка фторидов. При отгонке со смесью концентрированной хлорной и плавиковой кислот полностью отгоняются бор, кремний и мышьяк (III) частично отгоняются германий, сурьма (III), хром (III), селен (VI), марганец (VII) и рений (VU) совеем не отгоняются натрий, калий, медь, серебро, золото (III), бериллий, магний, кальций, стронций, барий, цинк, кадмий, ртуть (II), олово (И), церий (III), титан, торий, свинец, ванадий (V), висмут, молибден (IV), вольфрам (VI), железо (III), кобальт, никель. [c.159]

    Калия-бериллия фторид [c.57]

    Значительное количество солей фтора используется в металлургии, В США около 70% добываемого плавикового шпата (СаРг) расходуют в качестве флюса в мартеновских и электрических печах, В качестве флюса при производстве магниевых сплавов и при термической обработке режущего инструмента используют фторид магния. Криолит, фториды алюминия, натрия, лития применяются в производстве алюминия. Фторид бериллия и его двойная соль с фторидом натрия используются в производстве бериллия. Фториды натрия, калия, аммония входят в состав легкоплавких смесей, используемых при извлечении различных металлов из их соединений Плавиковую кислоту применяют для очистки чугунных отливок от формовочного песка. [c.316]

    Хотя принято считать, что Гей-Люссак и Тенар в 1809 г. впервые получили борфтористоводородную кислоту и установили возможность существования фтороборатов натрия, калия, бериллия, магния, стронция, бария, алюминия, иттрия и циркония, все же основоположником химии фтороборатов следует считать Берцелиуса, который еще раньше получал их с помощью разных методов, а именно 1) прямым взаимодействием между трифторидом бора и фторидами металлов 2) взаимодействием между борфтористоводородной кислотой и различными соединениями металлов (фторидами, окислами, гидроокисями и карбонатами) 3) с помощью реакции между фторидами металлов и борной и фтористоводородной кислотами и 4) реакцией между борной кислотой и бифторидами металлов [12]. Все эти методы в разных вариантах до сих нор используются в качестве обычных методов получения фтороборатов однако наряду с ними пользуются также двумя другими методами, а именно растворением соответствующего металла в борфтористоводородной кислоте и добавлением к молекулярному соединению трифторида бора, в котором координационная связь слабее связи, образующейся при получении фторобората металла в соответствии с реакцией [108] [c.181]


    Реакцию гидролиза солей бериллия можно ускорить путем переведения последнего в устойчивый фторидный комплекс. Для этого гидроокись бериллия, полученную осаждением из растворов, растворяют во фториде калия. Выделяющуюся в результате реакции [c.60]

    Простой метод предложен для определения кислорода во фториде и хлориде бериллия [175, 803]. Определение основано на взаимодействии окиси бериллия (или основного фторида) с фторидами натрия или калия по реакции [c.198]

    Для бериллия, так же как и для алюминия, предложен индикаторный метод титрования фторидом калия . Ход определения такой же, как в случае алюминия, однако в связи с более высокой растворимостью фторида бериллия количество этанола в растворе необходимо увеличивать до 70%, причем кислотность раствора должна соблюдаться особенно строго (pH от 2,1 до 2,3). Для установления кислотности пользуются метиловым оранжевым, как описано для определения алюминия, но применяют свидетель , состоящий из 35 мл 1%-ной соляной кислоты, содержащей [c.178]

    Перечисленные ниже ионы не мешают определению 0,4 мг/л нитрита по методу Райдера — Меллона при концентрациях, в 1000 раз (400 мг/л) превышающих концентрацию нитрита барий, бериллий, кальций, свинец, литий, магний, двухвалентные марганец и никель, калий, натрий, стронций, торий, уранил, цинк, арсенат, бензоат, борат, бромид, хлорид, цитрат, фторид, формиат, йодат, лактат, [c.128]

    Литий и бериллий, открывающие 2-й период, были вероятно, исключены из биохимической эволюции из-за того, что их химические свойства не вполне подходили к требованиям тонко сбалансированных систем клетки. Литий занимает особое положение он имеет наименьший -атомный радиус и, следовательно, наиболь ший ионизационный потенциал среди щелочных металлов. При отрыве от атома лития валентного электрона обнажается весьма устойчивая двухэлектронная оболочка. Ион Ы+ мало поляризуется под действием ионов, но весьма сильно сам поляризует другие ионы и молекулы. Малым ионным радиусом и, следовательно, сильным электрическим полем объясняется тот факт, что литий не образует устойчивых соединений с комплексными анионами. И, напротив. его карбонаты, фосфаты и фториды, в отличие от аналогичных соединений натрия и калия, труднорастворимы. Ион лития, имеющий наименьший среди щелочных металлов радиус, в водных растворах так сильно гидратирован, что его размер в гидратированном состоянии намного превышает радиусы гидратированных ионов Ыа+ и К+. Это препятствует Ь1+ проникать сквозь мембраны клетки и играть роль, которую играют ионы N3+ и К+. Однако, регулируя активность некоторых ферментов, он может влиять на ионный Ыа+—К+ баланс клетки. В повышенных концентрациях соединения лития — яд для организма. [c.177]

    В настоящее время резко возрос интерес химиков к определению малых количеств примесей в чистых веществах. Это связано с организацией и развитием атомной промышленности, которой необходимы сверхчистые уран, торий, бериллий, цирконий, ниобий и др. металлы. Еще более чистые вещества потребовались в электронике и электротехнике (германий и кремний, селен и селени-ды, арсенид галлия, антимонид сурьмы, фосфиды индия и галлия). Для изготовления лазеров нужны чистый рубидий и редкоземельные элементы. Новая техника нуждается также в высокочистых хлориде и бромиде кадмия, фторидах лития и кальция, иодиде калия, бромиде и иодиде индия, цезии высокой чистоты, гидриде цезия и др. Стали существенно более чистыми материалы, с которыми работают в промышленности химических реактивов, в черной и цветной металлургии при производстве жаропрочных и химически стойких сплавов и т. д. [c.9]

    В качестве основы и для приготовления плавней важно применять чрезвычайно чистые препараты. Иногда играет роль даже способ их получения. Например, при определении гадолиния в металлическом бериллии в качестве основы применялась окись бериллия, полученная разными способами из нитрата, хлорида, гидрата окиси, сульфата . Наибольшая чувствительность к гадолинию была получена с кристаллофосфором BeO(Gd), приготовленным из нитрата бериллия. В качестве плавня был применен в этом случае хлорид лития. Он дал лучшие результаты по сравнению с хлоридами натрия и калия, а также фторидами, сульфатами, фосфатами и боратами лития, натрия и калия. [c.137]

    В настоящее время большинство исследований в области солевых расплавов связано с изучением расплавленных фторидов, так как фтор имеет очень низкое поперечное сечение захвата тепловых нейтронов. В этом случае для растворения делящегося вещества наиболее часто используются фториды бериллия, лития, калия, натрия, циркония и рубидия. Изучались способы очистки этого топлива и наиболее перспективным методом признан процесс испарения фторидов и ионный обмен [6]. Метод ионного обмена считается наилучшим, так как при нем запас топлива может быть на 50% меньше, а выжигание его на 30% меньше. Смесью фторидов, имеющих наименьшую температуру плавления, является эвтектика фторида натрия и бериллия, содержащая 57 мол.% фторида натрия. Точка плавления этой смеси равна 350° [71. [c.57]


    Так как использование фторидов представляет значительный интер с, они были достаточно хорошо изучены. Однако чрезвычайно высокая токсичность фторида бериллия затрудняет его применение, а литературные данные показывают, что эвтектические смеси других фторидов имеют очень высокие температуры плавления. Типичным примером является эвтектика фторидов натрия и калия, плавящаяся при 710° [8]. Было установлено, что при таких высоких те.мпера- турах фториды обладают высокой коррозионной [c.57]

    В значительно меньшей степени по сравнению с фторидами бериллия аналогами силикатных структур служат сернокислые соединения, на что указывал еще Гольдшмидт". Брэдлинашел, что структура калие-во-литиевого сульфата КЬ1504 аналогична структуре калиевого алюмосиликата К[А115а04]. Гидратные или аммиачные комплексные соединения таких сульфатов могут быть аналогами лейцита, ортоклаза и т. [c.71]

    Металлотермическим восстановлением фторида бериллия литием, калием или магнием можно получить металлический бериллий  [c.158]

    Напишите графическую формулу а) нитрита магния б) сульфата бериллия в) нитрата натрия г) сульфита кальция д) бромида алюминия е). перхлората. пития ж) селената алюминия з) бромида стронция и) ди-)сромата калия к) манганата натрия л) перманганата лития м) алюмината калия н) фосфата калия о) фторида кальция п) нитрата гидроксомагния р) гидроксо- [c.24]

    Аргон Аг 84,9 0,0132 Этанол С2Н50Н 293 0,02203 Фторид калия KF 1186 0,1384 Бериллий Ве 1555 1,144 [c.210]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Соли бериллия, смоченные ра створом нитрита кобальта, при прокаливании дают серую массу. Сплавленная с двукратным количеством ислого фтористо го калия НКРг масса растворяется в воде., содержащей фтористоводородную кисл оту. При тех же условиях фторид калия-алюминия не растворяется. [c.587]

    Амперометрическое титрование можно проводить даже в том случае, если ни одно из веществ, участвующих в реакции, и ни один из продуктов реакции между ними не дает электродной реакции. В этом случае титрование возможно по так называемому индикаторному методу, предложенному Рингбомом и Вилькманом. Этот метод заключается в следующем если требуется определить ион, не дающий электродной реакции, при помощи иона, также не способного ни восстанавливаться, ни окисляться на электроде, то к исследуемому раствору добавляют небольшое количество такого вещества, которое было бы способно давать электродную реакцию и, кроме того, взаимодействовало бы с тем же реактивом, но лишь после того, как закончится реакция с определяемым ионом. Примером является разработанное Ю. И. Усатенко и Г. Е. Беклешо-вой . 3 определение алюминия, бериллия и циркония при помощи титрования раствором фторида калия в присутствии индикатора — трехвалентного железа. Алюминий, бериллий и цирконий образуют более прочные фториды, чем железо, и поэтому реагируют с фторид-ионом в первую очередь когда же они будут практически полностью связаны фторидом, последний начнет реагировать с железом (И1). При этом величина силы тока, обусловленная присутствием железа (П1), начнет уменьшаться, и кривая титрования будет иметь форму, изображенную на рис. 3. Четкость подобной кривой титрования определяется тем, в какой мере железо (П1) соединяется с фторидом в данной среде при реакции последнего с определяемым ионом. [c.18]

    При металлотермическом восстановлении в вакууме смеси галогенида бериллия (BeFg или ВеСЬ) с фторидом (хлоридом) щелочного или щелочноземельного металла (лития, натрия, калия, магния, [c.150]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Для анализа фторидов ионообменные методы имеют большее значение, чем для анализа других галогенидов. Ионы некоторых металлов, нанрилтер, натрия, калия, кальция, стронция, бериллия, железа, кобальта, никеля, цинка, кадмия, меди, олова, хрома, [c.246]

    Мешающие вещества. Определению фосфора не мешают ионы аммония, натрия, калия, лития, магния, стронция, бария, бериллия, кадмия, кальция, хрома(III), кобальтл, меди(II), марганца (II), никеля, ртути (П), а также анноны — ацетат, борат, бромид, хлорид, иодат, иодид, нитрат и селенит. Ионы золота(III), висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и циркоиила должны отсутствовать. Могут присутствовать в количестве до 1 мг ионы фторида, перйодата, перманганата, ванадата и цинка. Наличие алюминия, железа(III) и вольфрамата не должно превышать 10 мг в пробе. [c.104]

    Бериллий (Ве) — легкий металл светло-серого цвета. Название элемента происходит от греческого берилл . Открыт в 1798 г. французским химиком Л. Вокленом в минерале этого названия. Впервые бериллий получен в 1828 г. независимо друг от друга Веллером и Бюсси путем восстановления хлорида бериллия калием. В 1898 г. Лебо удалось получить более чистый металл электролизом расплава, содержащего фториды калия и бериллия. Начало промышленного производства металла относится к 30—40 гг. XX в. [c.86]

    Для бериллия, так же как и для алюминия, предложен индикаторный метод титрования фторидом калия [1]. Ход определения такой же, как в случае алюминия, однако в связи с более высокой растворимостью фторида бериллия содержание этанола в растворе необходимо увеличить до 70%, причем кислотность раствора должна соблюдаться особенно строго (рН = 2,1—2,3). Для установления кислотности применяют метиловый оранжевый, как описано для определения алюминия, но используют свидетель , состоящий из 35 мл 1%-ной соляной кислоты, содержащей 3,2 мл 0,5 н. раствора хлорида кобальта в 1%-ной соляной кислоте и 9,3 мл такого же раствора хлорида железа. Состав осадка соответствует формуле На2Вер4. Примеси, не мешающие определению алюминия, не мешают и при определении бериллия, но сам алюминий титруется вместе с бериллием, причем расход фторида не соответствует сумме находящихся в растворе бериллия и алюминия. Это исключает возможность совместного определения ионов обоих металлов и определение одного из них по разности. [c.111]

    Многие вещества в тем числе барий, бериллий,кальций,свинец, литий, магний, марганец (2+), никель (2+),калий, натрий, стронций, торий, уранил, цинк,арсенат,бензоат, борат,броглид,хлорид, цитрат, фторид, формиат, йодат,лактат,молибдат,нитрат,окса- лат,фосфат, пирофосфат, салицилат, селенат,сульфат, тартрат,тетраборат и роданид не мешают определению нитритов. [c.46]

    В единичных случаях, однако, применяют и химические методы— весовые, объемные и фотометрические. Так, в смазочных материалах литий определяют весовым методом в виде LiaSOi [102, 1210] после извлечения лития раствором КОН, осаждения Б виде перйодата и обработки при нагревании сульфатом аммония. Описаны методы определения лития с реагентом торон I в магниевых, а также и алюминиевых сплавах [72, 102]. При определении следов лития в бериллии и ее окиси [102, 577] его экстрагируют из раствора бериллия в 1 М КОН раствором дипивалоилметана (0,1 М) в диэтиловом эфире при добавлении фторида калия или аммония для маскировки бериллия. Затем литий реэкстрагируют 0,1 М НС1 и определяют спектрофотометрически с тороном I в водно-ацетоновой среде. Чувствительность метода З-Ю /о- В окиси железа с добавками марганца и галлия [90, 102] литий определяют с помощью реагентов торон I или арсеназо П1, а также после экстракции смесью четыреххлористого углерода и трибутилфосфата, реагентом АТ (раствор азо-азокси БН) в смеси ССЦ и трибутилфосфата. [c.144]

    Фтор входит в состав многих других минералов, не имеющих значения как сырье для получения соединений фтора вследствие их редкости или низкого содержания фтора. К числу этих минералов относятся фториды магния, алюминия и редкоземельных элементов ряд фтороалюминатов гексафторосиликаты калия и аммония фторокарбонаты церия фторофосфаты и фтороарсе-наты бериллия, магния, алюминия и железа, многочисленные фторосиликаты, в которых фтор связан с бериллием, магнием или алюминием слюды и т. п. Подробный перечень содержащих фтор минералов с указанием их состава, важнейших свойств и местонахождения см. [27]. [c.13]


Смотреть страницы где упоминается термин Калия-бериллия фторид: [c.318]    [c.479]    [c.76]    [c.14]    [c.800]    [c.245]    [c.438]    [c.41]    [c.59]    [c.84]    [c.32]    [c.74]   
Смотреть главы в:

Вредные неорганические соединения в промышленных выбросах в атмосферу -> Калия-бериллия фторид




ПОИСК





Смотрите так же термины и статьи:

Бериллия фторид

Калий фторид

Калия фторид, открытие бериллия



© 2025 chem21.info Реклама на сайте