Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

величине исследуемых веществ

    Исследуя адсорбцию на жидких поверхностях, измеряют поверхностное давление —а в зависимости от площади со, приходящейся на молекулу (нерастворимые монослои), или поверхностное натяжение в зависимости от концентрации поверхностноактивного вещества в объемной фазе (монослои растворимых или летучих веществ). В первом случае величину адсорбции на поверхности жидкости можно определить, зная количество нанесенного на поверхность нелетучего и нерастворимого вещества, образующего монослой, и занимаемую монослоем на поверхности жидкости площадь. Во втором случае величина адсорбции на поверхности жидкости непосредственно не измеряется. Она может быть вычислена из зависимости а от Са с помощью уравнения Гиббса (ХУП, 37а). Наоборот, в случае адсорбции на поверхности достаточно высокодисперсных твердых тел измеряется (в зависимости от парциального давления или концентрации адсорбируемого вещества в объемной фазе) именно величина адсорбции. Для определения поверхностного давления ти в этом случае также может быть применено уравнение Гиббса, поскольку оно связывает три величины поверхностное натяжение, адсорбцию и давление адсорбата в газовой фазе. [c.476]


    Теплоемкость—одна из важнейших величин, характеризующих вещество. Многие важные термодинамические расчеты, имеющие как теоретическое, так и прикладное значение, основаны на использовании величин теплоемкостей веществ. Данные по теплоемкостям чистых веществ и их смесей необходимы для многих технических расчетов. Теплоемкость является весьма чувствительным свойством вещества, позволяющим исследовать его структуру, силы взаимодействия атомов и атомных групп в молекуле и т. д., и часто используется при детальном изучении веществ, находящихся в твердом или жидком состояниях. Важное значение имеют и более частные области использования данных по теплоемкостям изучение фазовых переходов, критических явлений, состояния адсорбированного вещества, определение количества примесей в веществе и т. д. Данные по теплотам фазовых переходов нередко используют сов.местно с величинами теплоемкостей для решения тех же вопросов (вычисление термодинамических функций веществ, определение количества примесей и т. д.). Но в некоторых случаях измерение теплот фазовых переходов имеет целью более специфические задачи. [c.236]

    Исследовано [224] влияние величины pH суспензии, дзета-потенциала твердых частиц и электрической проводимости фильтрата на скорость процесса фильтрования, выраженную удельным сопротивлением осадка и продолжительностью фильтрования при получении эквивалентных количеств фильтрата. Опыты проведены, в частности, с пигментом зеленым фталоцианиновым. Отмечена возможность ускорения процесса фильтрования путем понижения величины pH и сдвига дзета-потенциала в сторону положительных значений при добавлении к суспензии поверхностно-активного вещества. [c.201]

    В работе исследуют влияние концентрации растворенного вещества на величину адсорбции при постоянных температуре и количестве адсорбента, одном и том же растворителе (Н2О). Для исследования используют водные растворы карбоновых кмслот, например щавелевой, янтарной, малеиновой, глутаровой и др. Величина адсорбции при достижении адсорбционного равновесия устанавливается методом измерения электрической проводимости растворов по времени. [c.436]

    В этом случае мы действительно можем определить приблизительно постоянную р данном ряду молекул энергию, приходящуюся на связь данного типа (или подтипа) в каждой молекуле нашего ряда. Следовательно, для решения вопроса о том, в какой степени деление на подтипы связей С — С и С — Н в алканах отображает действительные отношения атомов, имеющиеся в этих молекулах, следует исследовать вопрос о том, могут ли быть найдены характерные для введенных подтипов связи С — С и С — Н, приблизительно постоянные для всех молекул, содержащих связи этих подтипов, значения энергии, рефракции и других величин, имеющих физический смысл по отношению к одной химической связи. Следует отметить, что далеко не все величины, характеризующие вещество или отдельную молекулу в целом, имеют такое физическое содержание, что их можно разделить на части, относящиеся к отдельным связям в молекуле. Например, физически необоснованна попытка распределить по связи такие величины, как температуру кипения или плотность. В более общей форме можно сказать, что все факторы интенсивности (температура, плотность, давление и т. п) не могут быть разделены на части, соответствующие отдельным связям в молекуле. [c.77]


    При образовании практически нерастворимых монослоев исследуют адсорбцию на жидких поверхностях. При этом измеряют поверхностное давление х в зависимости от площади а, приходящейся на одну молекулу. В этом случае величину адсорбции на поверхности жидкости можно определить, зная количество нанесенного на поверхность малолетучего и практически нерастворимого вещества, образующего монослой, и площадь, занимаемую монослоем на поверхности жидкости. [c.355]

    Подобие критических явлений в объектах разной природы позволяет рассматривать их с единой точки зрения. В 19 веке наиболее полно были исследованы переходы пар - жидкость и газ - жидкость. В работах Ван-дер-Ваальса, Клаузиуса, Дитеричи было получено приведенное уравнение состояния и сформулирован закон соответственных состояний [12] для приведенных величин. Приведенные значения получают делением количественных значений свойств на критические свойства. Согласно закону соответственных состояний у сходных по природе веществ приведенное давление насыщенного пара является универсальной функцией температуры, а энтропия парообразования является универсальной функцией приведенной температуры (уточненное правило Трутона о равенстве отношений теплот парообразования различных жидкостей к их температурам кипения). Питцер и Гутенгейм развили теорию соответственных состояний для жидкостей. Для всех объектов существуют определенные физические величины, температурная зависимость которых вблизи точек переходов различной природы почти одинакова. Отсюда следует предположение об изоморфно-сти критических явлений термодинамические функции вблизи критических точек одинаковым образом зависят от температуры и параметра порядка при соответствующем выборе. термодинамических переменных. [c.21]

    I) Уравнение Герца — Кнудсена. Первое систематическое исследование скоростей испарения в вакуум было проведено Герцем в 1882 г. [28]. Он перегонял ртуть и определял потери вещества на испарение при одновременном измерении гидростатического давления на испаряющейся поверхности. Исследуя вещества с хорошей теплопроводностью, такие как ртуть, он пришел к заключению, что скорость испарения может быть ограничена вследствие недостаточного подвода тепла к поверхности. Для всех выбранных условий Герц обнаружил, что скорость испарения пропорциональна разности между равновесным давлением ртути р при температуре поверхности резервуара и гидростатическим давлением р на этой поверхности. Из этих экспериментов он вывел важное заключение о том, что жидкость имеет особую способность к испарению и скорость испарения при данной температуре не может превосходить определенную максимальную величину, даже если подача тепла неограничена. Более того, теоретический максимум скорости испарения получается только в том случае, если с поверхности испаряется такое число молекул, которое необходимо для установления равновесного давления р на той же поверхности, причем ни одна из молекул не возвращается на поверхность. Это последнее условие означает, что должно устанавливаться гидростатическое давление Р = 0. На основе такого рассмотрения можно показать, что число молекул ( Ыд, испаряющихся с площади поверхности Ае за время <1/, равно числу молекул, соударяющихся с поверхностью в единицу времени при давлении [c.37]

    Бессель использовал маятник для того, чтобы с большой точностью проверить пропорциональность инертной и тяжелой массы. Уже Ньютон отлично знал, что закон качания маятника (независимость периода от массы) справедлив лишь в том случае, если тяжелая масса пропорциональна инертной. С доступной ему точностью он показал на опыте, что эти величины пропорциональны одна другой. Бессель доказал это с гораздо большей точностью — до 1/60000. Он исследовал вещество метеоритов, воду и другие материалы. [c.61]

    Если в области изучения первичных продуктов окисления и направлений их распада есть определенный экспериментальный материал и сформулированы основные закономерности, то процессы дальнейшего превращения продуктов окисления в смолистые вещества совершенно не исследованы. Данные об элементарном составе, величина йодного числа и наличие функциональных групп свидетельствуют о том, что смолистые вещества образуются в результате окислительной полимеризации и окислительной конденсации продуктов распада гидроперекисей с участием неуглеводородных примесей. Среди неуглеводородных составляющих бензинов наибольшее значение для процессов окисления имеют кислородные и сернистые соединения. [c.225]

    Исследуя восприимчивость монокристаллов, можно определить величину ее анизотропии [25—28]. Как мы увидим в главах, посвященных ЭПР и ЯМР комплексов ионов переходных металлов, эти данные применяются в нескольких важных областях. Анизотропию магнитной восприимчивости обычно определяют методом Кришнана, устанавливая критический момент вращения. В статье [31] рассматривается использование метода ЯМР для измерения магнитной восприимчивости веществ в растворе. Раствор парамагнитного комплекса, содержащий внутренний стандарт, вводят в объем между двумя концентрическими трубками. Раствор того же самого инертного стандарта в том же самом растворителе, в котором растворен комплекс, вводят во внешнюю часть конструкции. В этом случае наблюдаются две линии стандарта, причем линия вещества, введенного в раствор парамагнитного комплекса, соответствует более высокой частоте. Сдвиг линии внутреннего стандарта" в парамагнитном растворе относительно диамагнитного раствора АН/Н связывают с разностью объемной восприимчивости ДХ двух жидкостей  [c.156]


    Влияние концентрации на селективность ацетатцеллюлозной мембраны при очень низких концентрациях растворенного вещества представлено на рис. IV-18 [160]. Исследовалось задержание микроколичеств (10 —10- г-экв/л) радиоизотопов, которые были введены в растворы хлоридов и нитратов Na, s, Со, Sr, Al, Fe, имевших концентрацию от 10 до 10- г-экв/л. Растворителем служила особо чистая вода, удельное сопротивление которой составляло 3—4 Мом-см. Селективность фл рассчитывали, исходя из величин удельной радиоактивности разделяемого раствора и фильтрата. Из рис. IV-18, а видно хорошее совпадение значений селективности как по соли в целом (измерение электропроводности растворов), так и по катиону (измерение радиоактивности растворов). Характер изменения селективности по микрокомпоненту близок к характеру изменения ф по макрокомпоненту. Из [c.189]

    Проведено [9] исследование влияния способа получения, природы носителя и содержания никеля в катализаторе на величину поверхности металлического никеля. Прежде всего исследовалось влияние химической природы исходных веществ и условий восстановления на величину поверхности в отсутствие носителя. Исследование влияния температуры прокаливания на величину поверхности закиси никеля показало, что при температурах ниже 300 °С [c.24]

    На величину поверхности закиси никеля, получаемой термическим разложением, кроме температуры могут оказывать влияние также природа исходных веществ и степень их дисперсности. Чтобы дифференцировать влияние этих факторов, исследовалось прежде всего влияние величины поверхности исходного соединения на дисперсность продукта разложения. В качестве исходных материалов были использованы образцы гидроокиси с поверхностью от 12 до 154 м /г и основной углекислой соли никеля с поверхностью от 45 до 195 м /г. [c.26]

    Исследования внутренних эффективных полей на ядрах мессбауэровских изотопов и изучение механизма их происхождения чрезвычайно важны для понимания природы возникновения ферромагнитных, антиферромагнитных и ферримагнитных состояний. Исследование температурой зависимости величины внутреннего эффективного поля на ядре в магнитных веществах дает возможность исследовать магнитные фазовые превращения, определять значе-ния критической температуры магнитного перехода. [c.214]

    Константы некоторых веществ исследовались всеми перечисленными авторами. Они, как правило, хороню совпадают. Эти данные указывают на усиливающее и нивелирующее действие аммиака на силу кислот. Величина рК большинства кислот изменяется в пределах двух единиц — от 2,5 до 4,4. Сила синильной кислоты (р.й в воде 9,33) и сероводорода (рАГ в воде 7,24) уравнивается с силой сильных минеральных кислот. Несмотря на большую основность аммиака, происходит общее ослабление силы кислот рАГ даже самых сильных кислот больше двух. Это ослабление объясняется сравнительно малой диэлектрической проницаемостью аммиака (21), благодаря чему возникает заметная ассоциация ионов. Различие в степени ассоциации обусловливает некоторое различие в силе сильных кислот. [c.282]

    Однородные константы веществ можно расположить по их величинам 2и. .. 2о, как, например, длины волн отдельных элементов в спектре. В качественном анализе в спектре исследуют соответствующий интервал и наблюдают, появляются ли искомые сигналы 2 . .. 2п- Последними могут быть, например, световое излучение определенной длины волны, образование осадка сульфида при различных регулируемых концентрациях сульфид-ионов и т. д. Из таких данных делают выводы о присутствии или отсутствии искомого вещества. [c.11]

    Наибольшей диффузностью двойной слой обладает вблизи точки нулевого заряда. Метод измерения емкости двойного слоя позволяет исследовать изменения, происходящие в двойном электрическом слое, в частности кинетику адсорбции поверхностно активных веществ, деформацию ионов под влиянием электрического поля, изменение толщины двойного слоя при адсорбции атомов и молекул. Сравнительное изучение поведения ряда металлов в водных растворах показало, что строение ионного двойного слоя относительно мало зависит от природы металла. Вместе с тем определение значения емкости двойного слоя помогает судить о строении и истинной поверхности металлического электрода. Измерения емкости в разбавленных растворах позволили, например, непосредственно проверить на опыте теорию диффузионного строения двойного слоя и определить величину потенциала l3], создаваемого частью двойного слоя, находящейся на расстоянии одного ионного радиуса от поверхности электрода. [c.225]

    Если исследуется ограниченная область составов растворов, где один из компонентов (1) выступает как растворитель, а второй (2) как растворенное вещество, то для характеристики изменения энтальпии при образовании раствора нередко пользуются следующими величинами  [c.234]

    Так, если 1 м масла растекается в пленку толщиной 25 А, то площадь пленки составляет 1/25-10 ° = 4-10 м , или 400 квадратных километров Эти цифры вполне соответствуют реальным величинам . Не входя в подробное рассмотрение истории исследования поверхностных пленок, отметим лишь важнейшие этапы — количественные исследования лорда Рэлея, показавшие, что а уменьшается при образовании пленки, и позволившие ему в конце XIX в. сформулировать представление о мономолекулярной слое на поверхности воды. Следует отметить также работы Лэнгмюра (начало XX в.), который впервые исследовал пленки индивидуальных химических веществ и разработал метод прямого измерения давления пленок. [c.97]

    Для каждого вещества характерна совокупность определенных физических и химических свойств. Обычно прежде всего изучают физические свойства вещества агрегатное состояние (твердое, жидкое, газообразное), цвет, блеск, плотность, температуры кипения и плавления, электрическую проводимость, растворимость в воде. Эти свойства выражают численными величинами — физическими константами вещества. Исследуя химические свойства вещества, выясняют, в каких реакциях оно участвует. [c.5]

    Опыт показывает, что при растворении в данном растворителе какого-нибудь вещества равновесное давление пара растворителя понижается. Количественную связь между понижением давления пара и составом раствора открыл в 1887 г. Ф. Рауль. В отличие от своих предшественников он исследовал не только растворы кислот, щелочей и солей, но также растворы органических соединений, применение которых позволило исключить из рассмотрения усложнение картины, вызываемое диссоциацией солей и кислот. В 1882 г. Рауль определил Тзам около 30 органических веществ в водных растворах. Он показал, что независимо от природы веществ растворение одного моля вещества в 1 кг растворителя (воды) приводит к понижению точки замерзания на одну и ту же величину (1,85°С). Затем Рауль заменил воду бензолом, в котором он растворял целый ряд органических соединений. Оказалось, что все они показывали в бензоле одинаковое молярное понижение Т зам рЗВ-ное 5,2 °С. От измерений точек замерзания Рауль перешел в 1886 г. к определениям давления паров неводных растворов. Это привело его к открытию эмпирического закона, который был впервые опубликован в 1887 г. в работе Об упругости пара эфирных растворов . [c.112]

    Энергия водородной связи в воде, спиртах и ряде других веществ возрастает на величину до 400 Дж/моль при замене водорода в связи X—Н... на дейтерий. Этот интересный эффект детально исследовал И. Б. Рабинович [5]. [c.63]

    Вследствие малой удельной поверхности стеклянных шариков (см. табл. 2) на них можно наносить лишь малые количества неподвижной фазы. Максимальное количество неподвижной фазы зависит от радиуса шариков, иоверхностного натяжения и плотности неподвижной фазы и изменяется в пределах 0,05—3%. При оптимальном содержании ненодвижной фазы достигается высота теоретической тарелки 0,5 — 1 мм, причем в области скоростей 16 —100 мл мин эта величина не зависит от скорости газа. Этот факт, а также малое содержание неподвижной фазы позволяют снизить время анализа (которое, как известно, зависит от количества неподвижной фазы и от скорости потока газа) па 40% при том же качестве разделения, и, следовательно, можно работать при температурах на 250° ниже температуры кипения наиболее высококипящего компонента анализируемой смеси (Хишта, Мессерли и сотр., 1960). В этом, по-видимому, заключается главное преимущество стеклянных микрошариков как носителей. Таким образом, оказывается возможным применять менее устойчивые к нагреванию полярные неподвижные фазы, использовать аппаратуру, менее пригодную для работ нри высоких температурах, и, кроме того, исследовать вещества, термически неустойчивые. Вследствие малого количества неподвижной фазы приходится, однако, применять пробы малого размера. Правильная форма стеклянных шариков позволяет изготовлять колонки с воспроизводимыми величинами числа тарелок , что в случае носителей на основе кизельгура (Шретер и Лейбнитц, 1961) связано со значительными трудностями. [c.88]

    По методу Кнаппе, Ольдекоп [81 исследовал нитро-производныё пероксидов ацилов и нашел, что величины этих веществ всегда меньше значений Rf. соответствующих незамещенных соединений. Для определения пятен гидропероксидов из стероидов при ТСХ окисленных холестерина, стигмастерйна и других стероидов использованы гидрохлориды N,N —диметил— и N, N, N, N - тетраметил-л - енилендиаминов [ 9]. [c.124]

    Исследуем роль основнь1х параметров на процесс массопередачи с химической реакцией. На рис. 6.7-6.9 приведены зависимости А от т(А характеризует количество извлеченного при хемосорбции вещества). При увеличении константы скорости реакции величина А возрастает, достигая максимального значения при (кривая 1 на рис. 6.7). [c.280]

    В работах [103—105] была исследована кинетика процесса кристаллизации на основании вышеизложенной модели при условии, что л—1 и /Птах—максимальный размер кристалла. Эти предположения могут быть приняты в качестве первого приближения, но их уточнение было бы весьма желательно. Действительно, всегда существует некоторая вероятность того, что настоящий кристалл-лидер не окажется в пробе, отобранной для дисперсионного анализа возможна ошибка и в противоположную сторону, когда в качестве кристалла-лидера будет зафиксирован кристалл, выросший на случайной затравочной частице, находившейся в растворе или на стенке сосуда до начала кристаллизации. Уточнение величин /Итах и п требует дополнительной и1 формации. Для этой цели в работе [106] использовали функцию M t), которую нетрудно построить по экспериментальной кривой с(О, исходя из уравнения баланса кристаллизующегося вещества [c.301]

    В качестве примера рассмотрим процесс превращения какого-либо вещества в различных типах непрерывнодействующих аппаратов. Предположим, что этот процесс протекает соответственно уравнению мономолекулярной реакции, и исследуем характер изменения концентрации от начальной величины до конечной л , имея в виду, что равновесная концентрация равна а. [c.30]

    Прежде чем приступить к титрованию, необходимо исследовать способность реагирующих веществ к электродной реакции. Для этого снимают вольтамперные кривые отдельно титруемого вещества и титранта. На основании полученных кривых устанавливают потенциал, при котором следует проводить титрование. Величина его должна соответствовать (см. рис. 47) диффузионному току хотя бы одного из указанных веществ. Кроме того, необходимо убедиться в том, что изменение концентрации деполяризатора вызывает пропорциональное изменение диффузионного тока. Особенно необходимо это в случае применения в качестве титрантов органических реагентов (диметилглиоксим, 8-оксихинолин и др.), так как для них такая цропорциснальность сохраняется часто лишь в узком интервале. После выполнения указанных предварительных исследований можно проводить титрование. [c.161]

    Рассмотренный выше метод определения смачиваемости порошков по измерению давления вытеснения не может претендовать на большую точность. Для получения точных значений адгезионного натяжеччя должен быть учтен гистерезис смачивания. Последний особенно резко выражен в случае образования па твердой поверхности адсорбционного слоя растворенных веществ. Однако, если исследуется избирательное смачивание твердых поверхностей чистыми жидкостями, не показывающими значительного гистерезиса смачивания, метод дает возможность судить о величинах адгезионного натяжения между разного рода жидкостями и твердым телом. [c.146]

    Поскольку диамагнитная восприимчивость имеет значительно меньшую величину, чем парамагнитная и ферромагнитная, исследовать диамагнетики трудно, так как даже следовые количества примесей парамагнетиков могут заметно исказить результаты. Например, если анализируемое диамагнитное вещество содержит Рез04 или РегОз порядка 10- %, то намагниченности за счет примеси парамагнитного и основного диамагнитного веществ становятся сравнимыми. [c.203]

    Молекула в целом асимметрична в результате координирования разнородных оптически неактивных монодентатных аддендов. Это мало изученный случай. Величины углов вращения иногда лежат в пределах ощибок опыта, что может быть вызвано малой величиной углов вращения или сравнительно высокой скоростью изомеризации вещества. Примером такого типа соединений служат комплексы с щестью различными заместителями, оптическая активность которых, к сожалению, пока не исследовалась. [c.52]

    Изучение адсорбции, например, на глинах, обладающих большой поверхностью, усложняется многими факторами, которые сильно сказываются на величинах сорбционной емкости. К ним следует отнести способность некоторых глинистых минералов увеличивать параметр вдоль оси С, т. е. изменять структуру в процессе сорбции эффект ультрапористости у структур, состоящих из высокодисперсных глинистых частичек, который ограничивает проникновение вещества с молекулами, превышающими размеры тонких пор, к участкам внутренней поверхности насыщение глин разными обменными ионами, вследствие чего они обладают неодинаковыми адсорбционными свойствами влияние кислотной обработки, термического воздействия, электродиализа, диспергирования и др. Поэтому, прежде чем изучать явление адсорбции на глинах, необходимо подробно исследовать структуру данного материала адсорбционными методами, что позволит учесть структурные и кристаллохимические особенности дисперсного минерала и исключить те случайные помехи , которые встречаются в процессе сорбции. [c.123]

    Наконец, твердые вещества можно исследовать при помощи спектроскопии отражения. В инфракрасной области используют метод нарушенного полного внутреннего огражения по Фаренфорту, особенно для полимеров с большим молекулярным весом. Поддерживая предельную величину угла полного отражения излучения от поверхности раздела между веществом и подложкой, этим методом получают спектры, подобные спектрам поглощения [62, 66]. [c.240]

    С другой стороны, непостоянство средней величины молярного коэффициента погашения служит основой спектрофотометрических методов изучения состояния веществ и равновесий в растворах. Если при изменении концентраций реагирующих веществ изменяется средний молярный коэффициент погашения, то это указывает на возможность возникновения побочных процессов (изменение степени диссоциации комплекса, полимеризацию, ступенчатое образование комплексов и др.). Это позволяет спектрофотометрически исследовать состояние веществ в растворах. В дальнейшем будут даны некоторые приемы расчета истинных молярных коэффициентов погашения, которые необходимы для вычисления равновесных концентраций при получении количественных характеристик процессов комплексообразования, [c.21]

    Мостики могут быть образованы не только углеродными атомами примерами соединений с серусодержащими мостиками могут быть вещества общей формулы XXIV. На их примере исследовали зависимость барьера вращения бензольных ядер от длины мостика [36]. Величины А(3+ при п = 4 5 б [c.516]


Смотреть страницы где упоминается термин величине исследуемых веществ: [c.388]    [c.41]    [c.88]    [c.132]    [c.66]    [c.209]    [c.339]    [c.276]    [c.223]    [c.37]    [c.352]    [c.110]    [c.160]    [c.194]    [c.269]   
Руководство по газовой хроматографии (1969) -- [ c.57 ]




ПОИСК







© 2025 chem21.info Реклама на сайте