Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы Летучесть

    Молекулярные кристаллические вещества характеризуются значительной летучестью, твердость их невелика, они легкоплавки. Особенно низки температуры плавления и кипения у тех веществ-, молекулы которых неполярны. Кристаллы, образуемые благородными газами, также следует отнести к молекулярным, состоящим из одноатомных молекул, поскольку валентные силы в образовании этих кристаллов роли не играют, и связи между частицами имеют тот же характер, что и в других молекулярных кристаллах. [c.145]


    Силы взаимной связи в ионных кристаллах весьма значительны, и кристаллы с ионной решеткой обладают сравнительно высокими температурами плавления и малой летучестью. [c.125]

    Связи между молекулами разрушаются при нагревании много легче, чем между атомами в молекулах, по крайней мере в не слишком сложных молекулах. Вещества с молекулярными решетками обладают поэтому сравнительно низкими температурами плавления и значительной летучестью. Простейшие из относящихся сюда веществ, например Ог, N2, СН4 и т. д., обладают температурами плавления и кипения значительно более низкими, чем комнатные температуры, и в обычных условиях находятся в газообразном или жидком состоянии. Из более сложных веществ кристаллами с межмолекулярной связью обладают прежде всего органические соединения, например бензол, нафталин и др. [c.127]

    Расстояние между атомами в кристалле алмаза равно 1,54 А, т. е. такое же, как в простой связи между атомами углерода в органических соединениях. По-видимому, и энергия каждой связи в алмазе близка к энергии простой связи между углеродными атомами в органических соединениях. Эта энергия весьма значительна, чем обусловливается хорошо известная очень высокая.твердость алмаза и ничтожно малая летучесть его. Высокой твердости [c.132]

    Молекулярные кристаллы. Лед. Когда частицами, образующими кристалл, являются целые молекулы, то они связываются в кристалле межмолекулярными силами ( 27). Так как силы эти во много раз слабее, чем силы, связывающие частицы в ионных, атомных или металлических кристаллах, то молекулярные кристаллы обладают малой твердостью, низкими температурами плавления, значительной летучестью. [c.139]

    Ионная кристаллическая решетка содержит в своих узлах ионы чередующихся зарядов противоположного знака. Связь между ионами не имеет специфической направленности и обусловлена электростатическими взаимодействиями. Каждый ион контактирует с несколькими ионами противоположного заряда, в связи с чем в ионном кристалле отдельные молекулы не могут быть выделены. Число ионов, скоординированных около данного иона, называется координационным числом оно зависит как от соотношения значений зарядов, так и ог соотношения размеров ионов, составляющих кристаллическую решетку. Так, например, в хорошо известной структуре хлорида натрия (рис. 10) ионы натрия и хлорид-ионы закономерно чередуются вдоль трех взаимно перпендикулярных направлений, так что координационное число каждого нз них равно 6. Ионная кристаллическая решетка присуща различным солям. Ионным кристаллам свойственны значительная твердость, сравнительно небольшая летучесть и довольно высокие температуры плавления. [c.70]


    Межмолекулярная связь действует между молекулами газообразных и жидких тел. Так как межмолекулярная связь в большинстве случаев слабее обычной химической связи, молекулярные кристаллы плавятся при низких температурах и имеют высокую летучесть. Температуры плавления и кипения повышаются по мере перехода к более тяжелым элементам (табл. 11). [c.38]

    Примером вещества с атомной решеткой является алмаз. Его кристаллическая решетка состоит из атомов углерода, каждый из которых связан ковалентными связями с четырьмя соседними атомами, размещающимися вокруг него в вершинах правильной трехгранной пирамиды — тетраэдра. Поскольку ковалентная связь образуется в результате перекрывания орбиталей соединяющихся атомов, которые имеют вполне определенную форму и ориентацию в пространстве, то ковалентная связь является строго направленной (в отличие от ионной связи). Этим, а также высокой прочностью ковалентной связи объясняется тот факт, что кристаллы, образованные атомами, имеют высокую твердость и совершенно непластичны, так как любая деформация вызывает разрушение ковалентной связи (например, у алмаза). Учитывая, что любые изменения, связанные с разрушением ковалентной связи в кристаллах (плавление, испарение), совершаются с большой затратой энергии, можно ожидать, что у таких кристаллов температуры плавления и кипения высоки, а летучесть очень мала (например, у алмаза температура плавления составляет 3500 °С, а температура кипения —4200 °С). [c.42]

    Межмолекулярное взаимодействие в молекулярных кристаллах значительно слабее, чем в ионных и атомных кристаллах. Поэтому, как указывалось выше (с. 38), молекулярные кристаллы плавятся при низких температурах и имеют высокую летучесть. Примером веществ с молекулярной решеткой являются иод, сахароза, камфара и т. д. [c.42]

    У ионных кристаллов (рис. 1.9, 6 решетка построена из чередующихся ионов с противоположными зарядами, связь между которыми осуществляется за счет сил электростатического взаимодействия — кулоновских сил. Хотя энергия связи в решетке этого типа такая же, что и у атомного [составляет (8 — 12) X X 10 кДж/моль], прочность тел с этой структурой значительно ниже, так как в них связь рассеянная , ненаправленная. Поэтому, представители кристаллов такого типа хотя и обладают большой прочностью, высокой температурой плавления, малой летучестью, низкими тепло- и электропроводностями, но хорошо растворяются в полярных растворителях. Таковы неорганические соли и большинство минералов. [c.37]

    Металлические кристаллы (рис. 1.9, в) состоят из положительно заряженных ионов — катионов, между которыми размещаются покинувшие свои атомы электроны — так называемый электронный газ. Природа связи в этих кристаллах обусловлена электростатическим взаимодействием катионов с электронным газом. Энергия связи в решетке металлического типа на порядок меньше, чем в решетке вышерассмотренных типов и составляет 80— 120 кДж/моль. Поэтому их представители обладают меньшей твердостью, более низкой температурой плавления и большей летучестью, чем тела с рассмотренными типами структуры. Наличие свободных электронов в решетках металлического типа обуславливает высокую тепло- и электропроводность, а также — характерную для металлов пластичность (ковкость). Представителями кристаллов металлического типа являются исключительно металлы. [c.37]

    В молекулярных кристаллах (рис. 1.9, г) присутствуют молекулы, связь между которыми осуществляется силами межмолекулярного взаимодействия, называемыми силами Ван-дер-Ваальса (см. разд. 1.10). Силы эти гораздо слабее сил, рассмотренных ранее, и энергия связи в решетке молекулярного типа составляет всего лишь 8—12 кДж/моль. Тела с такой структурой обычно очень мягкие, обладают низкой температурой плавления, высокой летучестью, низкими тепло- и электропроводностями, а также хорошей растворимостью, особенно в родственных растворителях. В качестве представителей веществ, образующих кристаллы молекулярного типа, можно назвать диоксид углерода, аргон и большинство органических соединений. [c.37]

    Ионная решетка. Ионные кристаллы имеют в узлах пространственных решеток положительно и отрицательно заряженные ионы, которые связаны между собой электростатическими силами притяжения разноименных зарядов. Силы взаимодействия в ионных кристаллах весьма значительны, благодаря чему вещества с ионным типом решетки обладают высокой прочностью, высокими температурами плавления и малой летучестью. [c.32]

    Молекулярные кристаллы характеризуются малой прочностью, заметной летучестью и низкими температурами плавления. Интересное влияние на температуры плавления оказывает симметрия молекул. В среднем вещества, содержащие более симметричные молекулы, плавятся при более высоких температурах, чем аналогичные соединения с несимметричными молекулами, о явление иллюстрируется на примере производных бензола  [c.237]


    Ионные кристаллические решетки, в узлах которых чередуются положительные и отрицательные ионы, характерны для соединений элементов, сильно отличающихся по электроотрицательности. Представителями этого типа веществ являются фториды щелочных металлов. Как и в атомных решетках, в ионных кристаллах нельзя выделить отдельные молекулы, весь кристалл можно рассматривать как одну гигантскую молекулу. Связи между ионами прочные, поэтому ионным соединениям свойственны высокие температуры плавления, малая летучесть, большая твердость, хотя обычно несколько меньшая, чем для веществ с атомной решеткой. [c.155]

    Молекулярные кристаллы. Структурными единицами в кристаллах этого типа служат молекулы, связанные друг с другом силами Ван-дер-Ваальса или силами водородной связи. Малая энергия межмолекулярных связей определяет своеобразие свойств кристаллов этого типа. Их характеризует низкая энергия кристаллической решетки и связанные с этим малая механическая прочность, низкие температуры плавления и высокая летучесть. Молекулярные кристаллы не проводят электрический ток (диэлектрики) и обладают низкой теплопроводностью. [c.76]

    Особенность силикатных и алюмосиликатных кристаллов по сравнению с обычными ионными кристаллами, также состоит в том, что их связи в решетке преимущественно ковалентные. Этим объясняются высокие температуры плавления силикатов и их ничтожная летучесть, а также способность некоторых силикатов легко обменивать ионы металла на другие ионы. Так, некоторые природные цеолиты или искусственно приготовленные силикаты при взаимодействии с водными растворами солей могут содержащиеся в них катионы частично обменивать на катионы, имеющиеся в растворе, но при условии, если размеры этих ионов значительно не различаются. Например, Ыа" " (радиус 1,05 А) легко обменивается на ионы Са + (радиус 0,95 А) в отношении 2 1. [c.61]

    Галиды. Для ванадия (V) известен лишь один галид — пентафторид ванадия VF5— бесцветные кристаллы, сублимирующиеся при 111° С. Галиды ниобия и тантала летучи, что исключает возможность образования каких-либо защитных пленок, предохраняющих ниобий и тантал от коррозии в атмосфере галогенов при высокой температуре. Летучесть галидов можно оценить по данным табл. 16. [c.95]

    Ионные кристаллы обладают сравнительно высокими температурами плавления и малой летучестью. Это объясняется прочностью ионной связи. [c.84]

    Ковалентная связь между частицами образуется в кристаллах таких веществ, как алмаз, кремний, германий и др. (см. 7). Кристаллы с ковалентной связью обладают большой твердостью, высокой температурой плавления н малой летучестью. [c.84]

    Кристаллы чистых металлов построены из одинаковых атомов, и химическая связь в них является ненасыщенной (см. 7). Поскольку энергия металлической связи достаточно велика, то кристаллы металлов обладают довольно высокими температурами плавления и малой летучестью. Отличительными свойствами кристаллов металлов является их высокие электро- и теплопроводность, а также гибкость и ковкость. Все перечисленные свойства связаны с присутствием в решетке металлов свободно перемещающихся электронов. [c.85]

    Учитывая, что любые изменения, связанные с разрушением ковалентной связи в кристаллах (плавление, испарение), совершаются с большой затратой. ... можно ожидать, что у таких кристаллов температуры плавления и кипения. .., а летучесть — весьма. .. (табл. 4.13). [c.222]

    Так как силы Ван-дер-Ваальса слабы по сравнению с обычной химической связью, молекулярные кристаллы плавятся при. .. температурах и имеют. .. летучесть .  [c.252]

    Образовавшийся хлористый аммоний после добавления небольших количеств воды (около 1%) для увеличения размера кристаллов его псктупает в снабженный мешалкой чан, а затем фильтруется на нутче-фильтре. После этого сложный эфир промывают 2%-ным раствором хлористого кальция и перегоняют с водяным паром под пониженным давлением (рис. 77), чтобы освободить от нейтрального масла. Нейтральное масло (мепазин) обладает значительно большей летучестью, чем эфир фенола, и поэтому может быть почти полностью отогнан. Следы [c.418]

    Молекулярная кристаллическая решетка содержит в своих узлах молекулы веществ ковалентной природы, т. е. состоящих из атомов, соединенных друге другом ковалентными связями. Эти узловые молекулы связаны друг с другом слабыми ван-дер-ваальсовымн силами. Молекулярная кристаллическая решетма присуща самым разнообразным веществам элементарным окислителям, благородным газам, водородным, галогенным, кислородным соединениям неметаллов, всевозможным кислотам и. наконец, многочисленным органическим веществам. Молекулярным кристаллам свойственны малая механическая прочность, сравнительно большая летучесть и низкие температуры плавления. [c.70]

    Атомная кристаллическая решетка в своих узлах содержит атомы многовалентных элементов, которые связаны друг с друго.м прочными ковалентными связями.. 4томной кристаллической решеткой характеризуется небольшой круг веществ — это элементарные и некоторые сложные вешества, образованные атомами углерода, кремния, германия, бора.. 4томным кристаллам свойственны очень большая твердость, мал ит летучесть, очень высокая темиература илавления. [c.70]

    XИ НОНЫ — циклические дикетоны, молекулы которых содержат две карбонильные группы > СО. X. — окрашенные кристаллы, обладают резким запахом и большой летучестью. Производные X.— различные природные пигменты (напр., мускафаркн — красное красящее вещество мухомора). X.— производные полициклических углеводородов, играют очень важную роль в синтезе различных красителей (см. Антра-хиноновые красители). [c.276]

    Возгонкой (сублимацией) называют процесс, при котором кристаллическое вещество, нагретое ниже его температуры плавления, переходит в парообразное состояние (минуя жидкое), а затем оседает на холодной поверхности в виде кристаллов. Возгонка — превосходный способ очистки веществ в тех случаях, когда загрязнения обладают иной летучестью, чем само вещество, и заменяет длительную и трудоемкую кристаллизацию. Очищенное таким образом вещество свободно от загрязнений. Поэтому возгонку часто используют в качестве конечной операции при получении образцов для анализа. Этот метод особенно удобен для очистки веществ, образующих сольваты или гидраты. [c.51]

    В узлах молекулярных кристаллических решеток находятся молекулы, которые связаны друг с Другом слабыми межмолеку-лярными силами. Такие кристаллы образуют вещества с ковалентной связью в молекулах. Веществ с молекулярной кристаллической решеткой известно очень много. Это твердые водород, хлор, диоксид углерода и другие вещества, которые при обычной температуре газообразны. Кристаллы больщинства органических веществ также относятся к этому типу. Молекулярные кристаллические вещества характеризуются значительной летучестью, твердость их невелика, они легкоплавки. Особенно низкие температуры плавления и кипения у тех веществ, ма1е-кулы которых неполярны. Кристаллы, образуемые благородными газами, также следует отнести к молекулярным, состоящим из одноатомных молекул, поскольку валентные силы в образовании этих кристаллов роли не играют, и связи между частицами имеют тот же характер, что и в других молекулярных кристаллах. [c.155]

    Ионные кристаллические решетки, в узлах которых попеременно находятся положительные и отрицательные ионы, характерны для соединений элементов, сильно отличающихся по электроотрицательности. Типичными представителями этого класса веществ являются фториды щелочных металлов. Как и в случае атомных решеток, в ионных кристаллах нельзя выделить отдельные молекулы (нет преимущественного взаимодействия данного иона с каким-либо одним ионом противоположного знака) весь кристалл можно рассматривать как одну гигантскую молекулу. Связи между ионами прочны, поэтому ионным соединениям свойатвенны высокие температуры плавления, малая летучесть, большая твердость, хотя обычно несколько меньшая чем для веществ с атомной решеткой. Следует обратить внимание на два обстоятельства. Во-первых, твердость и тугоплавкость не обязательно связаны только с ионными силами. Твердость и тугоплавкость ионных соединений часто меньше, чем веществ с атомной решеткой. Во-вторых, многие ионные кристаллы содержат в своем составе мгюго-атомные ионы, такие, как 504 , N(V, [ u(NOg)4]2", [c.254]

    Снижение летучести в адсорбированном состоянии и разнообразие химической природы монослоев, нанесенных на неорганический адсорбент-носитель. Модифицироваиие саж и макропористых кремнеземов молекулами плоского строения, смесями молекул с макромолекулами и пленками полимеров. Экранирование активных центров поверхности. Модифицирование жидкими кристаллами. Отложение пироуглерода. Адсорбционные свойства карбокремнеземов. [c.74]

    Все благородные газы и многие молекулярные вещества с простыми симметричными молекулами кристаллизуются в молекулярных решетках с плотнейшей упаковкой. Это указывает на то, что для межмолекулярпых связей характерны ненасыщенность и нена-правленность. В молекулярных кристаллах из несимметричных молекул структура может быть более рыхлой (приспособленной к асимметрии молекул), но все же определяющим здесь выступает геометрический фактор, а не природа составляющих частиц. Структуры молекулярных кристаллов относятся к гетеродеслшческим в них сосуществуют два типа связи — внутри молекул и между молекулами. Связи, действующие между молекулами, намного слабее, чем межатомные внутри молекул. Поэтому именно мел<мо-лекулярные силы в первую очередь определяют многие физические свойства веществ (температуры плавления, твердость, плотность, тепловое расширение и др.). Низкие температуры плавления, высокая летучесть, малая твердость, незначительная плотность и высокий коэффициент теплового расширения — все это свидетельствует о слабости ван-дер-ваальсовой связи. Оценку величины энергии межмолекулярного взаимодействия можно получить, исходя пз экспериментальных данных по теплотам сублимации молекулярных [c.136]


Смотреть страницы где упоминается термин Кристаллы Летучесть: [c.45]    [c.145]    [c.126]    [c.71]    [c.352]    [c.50]    [c.595]    [c.32]    [c.135]    [c.254]    [c.48]    [c.48]    [c.48]    [c.48]    [c.191]   
Техника лабораторной работы в органической химии (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Летучесть



© 2025 chem21.info Реклама на сайте