Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты фракционирование

    Для производства капролактама полученную смесь циклогексанола и циклогексанона очищают при помощи фракционирования для производства адипиновой кислоты фракционирование не обязательно, так как нри окислении оба вещества образуют эту кислоту. [c.140]

    Для сополимерной системы АА - малеиновая кислота фракционирование проведено при использовании в качестве растворителя воды, [c.152]


    В отношении этого результата исследователи пишут Отсюда видно, что в весовом отношении кислоты со средним молекулярным весом занимают первое место (максимум для кислот Си—С15). Если выразить содержание кислот в молярных процентах, то окажется, что кислоты Сэ—С 5 присутствуют в смеси почти в одинаковых долях. Начальные и конечные члены ряда обнаружены в меньшем количестве. Причиной этого может быть то, что низшие кислоты в процессе получения частично вымываются водой, а высшие кислоты остаются в некотором количестве в колбе, в которой проводят фракционированную перегонку с водяным паром под пониженным давлением. Как в весовых, так и в молярных процентах содержания кислот с четным и нечетным числом атомов углерода приблизительно одинаковы. Из того, что в основном интервале этого гомологического ряда молярные доли всех кислот почти одинаковы, можно сделать заключение о приблизительной равноценности метиленовых групп парафинового углеводорода по отношению к действию кислорода. При этом получается, что средние группы менее устойчивы, чем группы, расположенные ближе к концам цепи. [c.582]

    Фракционированием мирзаанской нефти была выделена фракция — 122—150°, которая после соответствующей промывки и сушки перегонялась над металлическим натрием. Для извлечения ароматических углеводородов фракция 122—150° обрабатывалась 99%-нон серной кислотой. Полное удаление ароматических углеводородов контролировалось как цветной реакцией со смесью формалина и серной кислоты, так и методом комбинационного рассеяния света. [c.25]

    N2 (1 1). Колонна работает при 2 ат и 50 °С в этих условиях надуксусная кислота не разлагается со взрывом. Продукты окисления и непрореагировавшее сырье выходят сверху колонны и направляются на фракционирование. [c.157]

    Существует несколько методов выделения изобутилена из продуктов дегидрогенизации. Один из них заключается в первоначальном выделении изобутилена селективной абсорбцией серной кислотой, с последующим фракционированием углеводородов на легкую фракцию, состоящую из изобутана и 1-бутена, и конечную фракцию, куда входят к-бутан и 2-бутены. Из этих двух фракций последующей экстракционной перегонкой выделяют отдельные компоненты. Другой метод выделения изобутилена заключается в экстракционной перегонке углеводородов с ацетоном. Регенерированные олефиновые фракции могут без дальнейшего разделения служить сырьем для получения из них бутадиена. [c.70]


    Продукты реакции отделяются в отстойниках от отработанной кислоты, которая частично регенерируется и снова направляется в процесс. Алкилат после нейтрализации щелочью направляется в систему фракционирования, состоящую из изобута- [c.135]

    Существенное значение в процессе алкилирования имеет очистка алкилата. При щелочной промывке удаляются только кислоты и кислые эфиры, однако при этом в алкилате остаются сернистые соединения и сложные эфиры, которые частично разлагаются при фракционировании и образуют шлам. Кроме того, они вызывают сильную коррозию перегонной аппаратуры. Часть эфиров, оставшихся после фракционирования в алкилате, снижает его качество. [c.136]

    Линии / — поток нз пропановой колонны II — поток в пропановую колонну III — свежая серная кислота IV — отработанная серная кислота V — продукты реакции на фракционирование VI — сырье VII — рециркулирующий изобутан. [c.160]

    Жирные кислоты разделяются с помощью фурфурола, возможно также использовать фурфурол вместе с другим растворителем—керосином (фракционированная экстракция). [c.408]

    Разделение инсулина путем фракционированной экстракции проводил Крэг [258], пропуская его через 900 ступеней. В качестве растворителей применялись бутиловый спирт и водный раствор дихлоруксусной кислоты. Экстракция показала, что исходный раствор состоит, в основном, из двух компонентов. По такому же ме- [c.420]

    На заводах, вырабатывающих цирконий, применяют фракционированную экстракцию в следующей системе [478, 486] водная фаза, которая содержит соляную кислоту, роданистый аммоний и хлорид циркония в результате растворения четыреххлористого циркония, и органическая фаза. Наиболее пригодными из испытанных органических жидкостей оказались этиловый эфир [475, 481] и метилизобутилкетон [465, 470, 477, 481, 487]. Цирконий, поступающий в [c.445]

    Получение беизоиитрила. 25 г кристаллической сернокислой меди растворяют при иагреваиии в 150 г воды и к горячему раствору прибавляют 28 г 96%-ного цианистого калия. Выпадающий вначале осадок, абразоваиие которого сопровождается выделением газообразного циана, вскоре снова растворяется, после чего к нагретому до 90° раствору, помещенному в колбу, снабженную обратным холодильником и капельной вороикой, при энергичном взбалтывании приливают раствор хлористого фенилдиазония хлористый фенилдиазоний готовят диазотированием 9,3 г анилина в 80 г воды и 20,6 г соляиой кислоты уд. веса 1,17 — раствором 7 г нитрита натрия в 20 е воды. Реакционный раствор подвергают перегонке,, извлекают перегиавшееся масло эфиром и промывают раствором едкого натра и разбавленной серной кислотой. Фракционированная перегонка дает 6,5 г беизонитрила, кипящего при 184°. [c.46]

    Получение и формула. Экстракция из поджелудочной железы крупного рогатого скота 0,25 М раствором серной кислоты, фракционирование сульфатом аммония, кристаллизация и перекристаллизация вз раствора сульфата аммония, обессоливание на сефадексе G-25 или декст1 ановом геле ЭД-2,5 и лиофильная сушка. [c.338]

    ФУМАРОВОЙ и МАЛЕИНОВОЙ КИСЛОТ (ФРАКЦИОНИРОВАННЫЕ ПРОДУКТЫ) (ПО БАТЦЕРУ И МОРУ) [c.32]

    Эта кислота оказалась в (даклогексаноне (3 /о) совершенно инак-чийной. Правда, не исключается возможность того, что при довольно энергичном способе восстановления наступает рацемизация. Попытка разложения кислоты фракционированной кристаллизацией ее соли с бруцином дала, однако, отрицательные, результаты. Отсюда Гуде вывел заключение, что связи между мезо-углеродными атомами в молекуле антрацена не существует. [c.65]

    После фильтрации раствор подкислялся серной кислотой и о )гаии-чоские кислоты отгонялись с водяным па])ом. Кислотный отгон усреднялся бикарбонатом натрия, а затем после последовательного подкисления (недостаточным для полного выделения из натриевых солей свободных кислот количеством разбавленной серной кислоты) органические кислоты фракционированно отгонялись и анализировались. [c.699]

    Жирные кислоты изостроения, присутствующие в продуктах окисления парафина, уже значительно труднее выделить в чистом виде. При фракционировании метиловых эфиров жирных кислот, которые были предварительно освобождены от других кислородных соединений, кислоты изостроения накапливаются в цромежуточных фракциях. Омылением и многократной перекристаллизацией можно выделить чистые кислоты (Б. Вайс). Они обладают неприятным запахом и присутствуют в значительных количествах в жирных кислотах, полученных окислением парафина ТТН и парафина Рибек, их содержится приблизительно 12%, а в кислотах, имеющих своим источником синтетический парафиновый гач, их значительно больше (до 30%). Можно с достаточной вероятностью установить присутствие в структуре этих кислот метильных групп в и у-положениях, и возможно, что они имеются также в других положениях (Б. Вайс, Г. Мелап). В головных погонах жирных кислот также установлено наличие кислот изострое-ния. Кислоты, не обработанные силикагелем, содержат дикарбоновые кислоты с 9—16 атомами углерода (Бем).  [c.464]


    Экспериментальная часть. Мирзаанский бензин был выделен нами путем фракционирования мирзаанской нефти. Ароматические углеводороды удалялись 99% серной кислотой. Из деароматизированного бензина отбиралась фракция 95—122° и подвергалась дегидрогенизации ыа платинированном угле при 300—305° со скоростью 6 мл/час. Платинированный уголь был приготовлен по указанию Пак-кендорфа и оТедер-Паккендорф [9], Катализатор в количестве 33 г помещался в стеклянную трубку диаметром в 2 см длина слоя катализатора 60 см. Трубка нагревалась в электропечи типа Гереуса, температура которой измерялась термопарой и регулировалась терморегулятором. Активность [c.62]

    Исследуемая фракция 122—150° была выделена из норийской нефти скважины № 23 путем фракционированной перегонки. Эта фракция сперва промывалась 75%-ной серной кислотой, затем Ю о-ным раствором соды и дистиллированной водой, после сушки над хлористым кальцием перегонялась в нрисутствиц металлического натрия в том же температурном интервале. [c.76]

    Исследуемые фракции с т. кип. 150 200°С и 200—250°С выделяли фракционированием сацхенисской нефти (скважина № 4, глубина 1400 м). Фракция 150—200°С выделялась при атмосферном давлении, а фракция 200—250°С под вакуумом (10 мм). Они промывались 75%-ным раствором серной кислоты, 10%-цым раствором соды, дистиллированной водой до нейтральной реакции и после высушивания над хлористым кальцием перегонялись нал металлическим натрием в тех же пределах температур кипения. Для указанных фракций были определены удельный вес, максимальная анилиновая точка и показатель лучепреломления, значения которых даны в табл. 1. Значение предварительной промывки фракций 75%-ной серной кислотой одним из нас [8] приведено в предыдущей работе, [c.126]

    Материал для исследования получался нами фракционированием нефтей Грузии из различных скважин. Фракции 60—95°, 95-122°, 122—150° и 150—200° не давали качест-векпу1я реакщпо иа непредельные углеводороды, т. е. не реагировали И1Г с бромной водой, ни со слабым щелочны.м раствором перманганата калня. Исследуемые фракции промывались 73%-НОЙ серной кислотой, 10%-ным раствором щелочи, затем водой, сушились над хлористым кальцием и перегонялись в присутствии металлического натрия. Предварительная обработка бензино-лигроиновых фракций 73%-ной серной кислотой, щелочью и затем перегонка над металлическим натрием преследовали цель освободиться от нежелательных сернистых, кислородных и азотистых соединений, которые в качестве примесей могли присутствовать в исследуемых фракциях. Если бензино-лигроииовьте фракции не подвергаются предварительно такой обработке, то указанные выше неуглеводородные компоненты будут удаляться во время деароматизации фракции и последующей за ней промывкой щелочью и перегонкой над металлическим натрием. [c.151]

    Материал для исследования получался нами фракционированием норийской нефти из скважин №№ 22, 23, 25, 27 н 31. Выделенные фракции 60—95°, 95—122°, 122—150° и 150— 200° давали отрицательную реакцию на непредельные углеводороды. С целью удаления некоторых сернистых, азотистых и кислородных соединений, присутствующих в качестве примесей в исследуемых фракциях, они подвергались обработке 73%-НОЙ серной кислотой, 10%-пым раствором щелочи и водой, сушились над хлористым кальцием, а затем перегонялись в присутствии металлического натрия. [c.166]

    Материал для опытов был получен путем фракционированной перегонки сырой супсинской нефти собранные фракции бензольная, толуольная и ксилольная, взбалтывались по 10—15 мин. с 25 объемным процентом серной кислоты удельного веса 1,76, после чего промывались сперва водой, затем Ю-процентным раствором соды, снова водой, сушились над хлористым кальцием и перегонялись над металлическим (в виде проволоки) натрием. [c.187]

    Исследуемая фракция 60—150 была выделена фракционированием нефти Норио. Фракция 60—150 промывалась 75%-ной серной кислотой, 10%-ным раствором соды, водой и после сушки над хлористым кальцием перегонялась в присутствии металлического натрия, причем отбиралась фракция, кипящая в тех же температурных пределах. Для установления химического состава данной фракции нами был применен метод избирательного дегидрогенизационного катализа акад. Н. Д. Зелинского [15], [c.217]

    Казанский [72] окислял 3-метилциклогексанон разбавленной азотной кислотой в присутствии метаванадата аммония при 60—90° и получил две изомерные адипииовые кислоты (83%), которые были подвергнуты циклизации сухой перегонкой над гидроокисью бария. Полученные кетоны (выход 50%) обрабатывали метилмагнийгалоидом и полученные спирты подвергали дегидратации. Фракционированием продукта дегидратации (выход 52%, считая на кетоны) были получены [c.455]

    О до 40° при перемешивании в автоклаве, охлаждаемом водой. Однако при добавлении таких более реакционноснособных олефинов, как изобутилен и изопентены, пропилен легко реагировал с олефинами изостроения с большим выходом гептеновой и октеновой фракций. Диоксифторборная кислота, таким образом, использовалась в качестве катализатора для сополимеризации пропилена с изопентеном, пропена с изобутиленом, бутена-1 с изобутиленом, бутена-2 с изобутиленом и смеси -бутиленов с изобутиленом при температурах от О до 40° и давлении от 3,4 до 8,5 ат. Полимеры гидрировались, подвергались фракционированной перегонке, а полученные фракции анализировались методом инфракрасной спектроскопии. Гидрирование сополимера пропилена и изобутилена давало продукт, содержавший 67 % гептановой фракции, состоявшей на 95 % из 2,3-диметилпентана. [c.201]

    Впоследствии более стойкие алкилаты были получены в результате замены толуола бензолом с использованием для алкилироваиия полипропилена вместо триизобутилена (благодаря этому вводилась более стойкая пторичная алкильная группа) и применения более четкого фракционирования конечного продукта. Эти более новые алкилаты напоминают но легкости сульфирования толуол. Однако они отличаются тем, что к ним не применима методика перегонки при парциальном давлении для завершения реакции сульфирования, так как они имеют высокие пределы выкипания и склонность к потемнению и расщеплению, если применяются температуры выше 70 , особенно в присутствии серной кислоты. Кроме того, эти углеводороды лишь с трудом образуют полисульфокислоты или сульфоны и значительно не расщепляются при обработке их концентрированным олеумом и даже серным ангидридом, что обеспечивает применение последнего в качестве сульфирующего агента в виде разбавленных газовых смесей. Следовательно, применение таких сильных сульфирующих агентов пе только возможно, ио и представляется единственным практически применимым методом для достижения полного сульфирования без использования большого избытка кисло гы. При применении серного ангидрида фактические выходы приближаются к теоретическим. [c.534]

    Схема разделения углеводородов бутан-бутиленовой фракции фракционированием (простым или экстракционным) с последуюш,ей обработкой серной кислотой и хемосорбцией аммиачными растворами солей закасиой меди представлена на рис. 17. [c.69]

    Часть эмульсии из реактора непрерывно выводится в отстойник, где разделяется на углеводороды и кислоту. Углеводороды — непрореагировавщая часть — и алкилат направляются на фракционирование, а кислота возвращается в реактор. Выделенный во фракционирующем отделении изобутан также возвращается в реактор. [c.115]

    Линии I — сырье II — циркулирующая серная кислота III — углеводороды с кислотой IV — изобутан V — свежая кислота VI — -С< алкилат на фракционирование VII — пропан VIII — хладагент. [c.115]

    Из реактора непрерывно отводится часть эмульсии, которая поступает в отстойник для отделения углеводородов от кислоты. Кислота из отстойника направляется в реактор, а углеводородный слой (алкилат) подвергается щелочной и водной промывкам и затем направляется на фракционирование. Изобутан из фракционирующего отделения, где он частично депропанизируется, возвращается в реактор. [c.116]

    Линии 1 — поток изобутана из пропановой колонны II —отбор небольшого количества потока в пропаковую колонну III — углеводороды с кислотой из реактора в отстойники IV — переточные линии V — жидкая часть потока из реакторов на нейтрализацию и фракционирование VI — рециркулирующий изобутан из изобутановой колонны VII — сырье VIII — циркулирующая кислота из первого отстойника IX — вывод отработанной кислоты X — свежая кислота XI — кислота из второго отстойника в первый реактор А// — циркулирующая кислота из второго отстойника XIП — поток из реакторов [c.118]

    Аппаратуру для бокситной очистки устанавливают непосредственно после отстойной секции реакторного блока на потоке жидких продуктов, направляемых на фракционирование, перед теплообменниками. При таком расположении очистных аппаратов теплообменники и фракционирующая система защищены от загрязнения. Схема очистки следующая (рис. 31). Жидкие продукты из реактора проходят сначала емкость, заполненную стеклянной ватой — коалисцер 1, в которой отделяются от углеводородной фазы мельчайшие частицы кислоты. Таким способом удаляется около 75% ее количества. Затем жидкий поток проходит через бокситный фильтр 2, в котором извлекаются остаточные количества кислотных и сернистых примесей, растворенных в алкилате. Углеводородная смесь после бокситной очистки практически не содержит коррозионноагрессивных или загрязняющих компонентов. [c.133]

    Линии / — поток из реактора И — отработанная кислота III — продук на фракционирование IV — вода V — пар в конденсационный горшок VI -газ в топливную линию VII — вода в канализацию VIII — водяной пар [c.134]

    Тантал издавна применяется при производстве электрических лампочек кроме того, в настоящее время его начали применять при изготовлении химической аппаратуры в качестве материала, весьма устойчивого в отношении коррозии. Это—единственный металл, устойчивый к действию соляной кислоты. Тантал обычно встречается вместе с ниобием, который получил применение в атомных реакторах. Благодаря растущей потребности интерес к обоим металлам непрерывно увеличивается. В последние годы разработаны промышленные методы разделения, основанные на фракционированной экстракции по ним получают оба металла высокой степени чистоты. Эти методы гораздо производительнее, чем классический кристаллизационный метод Мариньяка [494] или другой промышленный метод [493] осаждения фторотанталата калия и фторониоби-ата калия из разбавленной фтористоводородной кислоты. По экстракционным методам оба металла переводятся в окисные или хлористые соединения, растворяются во фтористоводородной, соляной или серной кислоте и экстрагируются одним органическим растворителем или смесью из нескольких. [c.449]


Смотреть страницы где упоминается термин Кислоты фракционирование: [c.310]    [c.71]    [c.491]    [c.656]    [c.254]    [c.581]    [c.145]    [c.264]    [c.452]    [c.508]    [c.12]    [c.22]    [c.137]    [c.150]    [c.117]   
Переработка сульфатного и сульфитного щелоков (1989) -- [ c.235 ]




ПОИСК







© 2025 chem21.info Реклама на сайте