Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Твердые полимеры

    Формальдегид (метаналь, муравьиный альдегид) НСНО — бесцветный газ с острым раздражающим запахом, с температурой кипения -19,2°С, температурой плавления -118°С и плотностью (в жидком состоянии при -20°С) 0,815 т/м . С воздухом образует взрывчатые смеси с пределами воспламеняемости 5,5 и 34,7% объемн. Формальдегид хорошо растворим в воде, спиртах, ограниченно растворим в бензоле, эфире, хлороформе, не растворим в алифатических углеводородах. Легко полимеризу-ется, особенно при нагревании и в присутствии полярных примесей, образуя твердый полимер линейного строения (параформ) с оксиметиленовыми звеньями  [c.294]


    Стирол является продуктом, весьма склонным к термической полимеризации, причем чистка забитой твердым полимером аппаратуры и трубопроводов — это сложная и трудоемкая операция. Поэтому перегонка смесей, содержащих стирол, при атмосферном давлении недопустима. Все колонны ректификации стирола работают под вакуумом (остаточное давление 3,99—6,65 кПа). Для четкого отделения стирола от низко- и высококипящих примесей применяется система из трея последовательно соединенных колонн и одного перегонного куба. Помимо чисто инженерно-технических соображений, такое секционирование ректификационной системы имеет целью уменьшить перепад давления между верхом и кубом и тем самым воспрепятствовать повышению температуры в нижних частях колонн. В качестве стабилизаторов при перегонке стирола служат небольшие добавки п-хи-нона, л-трет-бутилпирокатехина и др. [c.385]

    Кетокислоты могут полимеризоваться с образованием твердых полимеров. [c.266]

    VII. Получение твердых полимеров [c.116]

    Соединение друг с другом большого числа олефиновых молекул в зависимости от степени полимеризации приводит к образованию маслообразных или твердых полимеров. Маслообразные полимеры получают, например, при обработке олефинов, особенно этилена, а также более высокомолекуляр- ных олефинов, безводным хлористым алюминием. При этом получают полимер, являющийся превосходным смазочным маслом. Этот процесс также не относится к области нефтехимической нромышленности и здесь пе рассматривается. [c.222]

    При блочном методе осуществляют полимеризацию чистого мономера, к которому добавляют инициатор. При этом в аппарате мономер превращается в сплошную глассу твердого полимера (блок). Характерный недостаток блочного метода обусловливается неравномерностью отвода тепла из различных точек реакционной массы, что связано с малой теплопроводностью полимера. [c.338]

    Значительное количество побочных продуктов, получаемых в результате синтеза диметилдиоксана, не было учтено в исходных данных, используемых при проектировании, а свойства их не изучены. Это привело к отклонению от принятых для расчета в проекте таких свойств выделяемых фракций, как температура их кипения, растворимость в воде, экстракционная способность, способность к смолообразованию, образованию твердых полимеров и вспениванию. Следствием этого явилось нарушение проектного режима по стадиям, в том числе на установке очистки сточных вод. [c.172]


    Второй метод получения искусственных латексов заключается в механической обработке твердого полимера (например, на вальцах) с постепенным добавлением раствора эмульгатора. На на- [c.602]

    Низкомолекулярная полимеризация олефинов в жидкой фаае используется для получения димеров — тетрамеров олефинов Сз—Сб, причем некоторые процессы используют в промышленности. Изучение олигомеризации виниловых мономеров является также этапом анализа промышленно важных процессов-их высокомолекулярной полимеризации с получением твердых полимеров. [c.255]

    При комнатной температуре эта реакция протекает бурно с образованием твердых полимеров олефина и циклоолефинов. [c.148]

    В твердом полимере, как и в бесконечно разбавленном растворе в 0-растворителе, полимерные цепи, характеризующиеся параметром гибкости Флори /о > 0,63, образуют статистические клубки. Объем, занимаемый таким клубком, заполнен полимерным веществом лишь на 1,5-3,0%. Некоторая часть этого незанятого объема клубка заполняется сегментами соседних цепей. В результате полимерные цепи в массе полимера оказываются как бы перепутанными. Однако анизотропия сегментов приводит к возникновению определенной упорядоченности молекулярное взаимодействие обусловливает возникновение ближнего порядка в их взаимном расположении. Поперечные размеры таких ассоциатов достигают 0,5 нм, а продольные - 10-15 нм. [c.136]

    Однако тепловое движение участков макромолекул, обусловливающее их гибкость, приводит к возникновению флуктуаций плотности вещества, продолжительность жизни которых в низкомолекулярных жидкостях составляет 10 -10 9 с, а в твердых полимерах в результате ограничения подвижности сегментов, как уже было сказано, от 10 с до Ю" лет. [c.136]

    Полимеризация в блоке жидких мономеров может осуществляться в присутствии или в отсутствие инициаторов (катализаторов). Вязкость системы постепенно возрастает, и в результате образуется сплощная масса (блок) твердого полимера. Этим способом получают полистирол, полиметилметакрилат и др. Если образующийся полимер растворим в мономере, то образуются прозрачные стекла, если нерастворим - обычно получают непрозрачную дисперсию полимера в мономере. [c.235]

    Для соединения деталей большого диаметра обычно пользуются плоскими шлифами. При необходимости их укрепляют с помощью пружинных зажимов или специальных струбцин с мягкими прокладками. На рис. 8 изображен стеклянный реактор для проведения реакций полимеризации. Наличие съемной крышки с плоским шлифом обеспечивает достаточную термичность и в то же время значительно облегчает выгрузку из реактора вязких полимерных растворов (и даже твердого полимера) и позволяег вводить в реактор нескладывающуюся мешалку. [c.31]

    Ацетилен может подвергаться и более глубокой полимеризации, образуя неплавкие твердые полимеры (особенно под действием различных металлических катализаторов). [c.603]

    Так образуется конечный твердый полимер, который можно вальцевать, шприцевать и т. д. [c.635]

    Свойства и происхождение балхашита могут служить доказательством того, что нерастворимые твердые вещества в горючих сланцах могли также первоначально представлять собой твердые полимеры жирных веществ или жирных кислот. Эта точка зрения подтверждается тем, что хорошо известные сланцы месторождений Грин Ривер в Колорадо, а также Вайоминга и Юта содержат относительно большое количество полутора- и бикарбоната натрия, находящегося в сланцах в виде включений белой кристаллической массы. (В одном из районов эти сланцы используются в промышленном масштабе для производства соды). Как будет показано дальше, существуют доказательства того, что конверсия тяжелых остаточных продуктов в нефть, содержащую легкие фракции, и большое разнообразие углеводородов обусловлены реакцией иона карбония, индуцируемой кислыми алюмосиликатными катализаторами, находящимися в контакте с нефтью. Кокс, Уивер, Хенсон и Хенна считают [16], что в присутствии щелочи катализ не осуществляется. В связи с этим возможно, что сохранение твердого органического вещества в битуминозных сланцах месторождения Грин Ривер и других залежах обусловлено присутствием щелочей. Предполагают, что сланцы месторождений Грин Ривер откладывались в солоноватых внутренних озерах в условиях, напоминающих условия образования современного балхашита [6]. Поэтому можно считать, что ненасыщенные растительные и животные жиры и масла представляли собой первичный исходный материал как для нефти, так и для так называемого керогена битуминозных горючих сланцев, образующих первоначально твердое заполимеризовавшееся вещество., Однако в сланцах, содержащих щелочь, НС наблюдалось медленного химического изменения, приводящего к образованию нефти [13а]. Природа минеральных компонентов битуминозных сланцев также может способствовать сохранению органического вещества и препятствовать его провращевию в нефть. Битуминозные сланцы месторождения Грин Ривер в большинстве своем содержат магнезиальный мергель. [c.83]


    Были получены также углеводороды путем взаимодействия этилена, окиси углерода и водорода в присутствии катализаторов Фишера—Тропша. Характер этих соединений по своим свойствам варьирует в широких пределах — от масел до хрупких парафинов и от гибких пластичных полимеров, как полиэтилен, до очень твердых полимеров, которые получаются при разложении диазометана. Эти различия в свойствах являются результатом двух независимых друг от друга структурных факторов. [c.168]

    Этот механизм чрезвычайно гибок и потому может легко объяснить картииу пепредельных структур, на11денных и полиэтилене. Он согласуется также с наблюдаемым фактом, что на молекулу полиэтилена непредельность является практически величиной постоянной. Так, папример, Кросс [9 нашел, что, начиная от твердых полимеров молекулярного веса 15 ООО до смазок низкого молекулярного веса до 480 и кончая жидкими продуктами пиролиза молекулярного веса 220, непредельность колебалась в пределах от 0,3 до 0,4 двойных связей на молекулу. [c.173]

    Заметим, что реакторы вытеснения редко применяют для проведения реакций полимеризации в основном из-за большой вязкости полимернзуюшейся жидкостиПрофиль скоростей в таких аппаратах обусловливает довольно широкий диапазон времен пребывания отдельных молекул. В результате этого наблюдается недостаточная степень полимеризации вещества, перемещающегося в непосредственной близости от оси аппарата, и чрезмерная степень полимеризации вещества, движущегося вблизи стенки, что приводит к отложению твердого полимера на стенке и к постепенному закоксованию аппарата. [c.114]

    Регенерация нитроксильного радикала. Нитрокспльпыс радикалы, как отмечалось выше, — слабые ингибиторы окисления углеводородов, так как, реагируя с алкияьпыхт- -радикалами, они конкурируют с кислородом, который быстро вступает в реакцию с радикалами К-. В твердых полимерах, однако, где микродиффузия кислорода идет медленно, нитроксильные радикалы достаточно эффективно тормозят окисление, обеспечивая многократный обрыв цепей, так что скорость их расходования намного меньше скорости инициирования [221]. [c.119]

    Приведенная схема позволяет найти и теплоту полимеризации газообразного мономера в твердый полимер ДЯмгг по уравнению [c.262]

    С при 0,1 МПа). При хранении он легко полимеризуется и нс редко выпускается в виде твердого полимера — параформальдегида (параформ), который легко деполимеризуется. Параформ является линейным полимером с повторяющимися оксиметилено-выми звеньями (число их от 8 до 100)  [c.474]

    Стирол СбИв—СН = СН2 представляет собой бесцветную жидкость (т. кип. 145,2при 0,1 МПа). Он полимеризуется при нагревании или под влиянием инициаторов с образованием твердого полимера — полистирола  [c.478]

    Повышение каталитической активности цеолитсодержащего катализатора, температуры при одновременном увеличении массовой скорости подачи сырья и сохранении постоянной глубины превращения способствует десорбции промежуточных продуктов реакции уплотнения, обрыву цепной реакции зарождения и уменьшению инициированной. цепной реакции образования на активных центрах твердых полимеров кокса. По мере утяжеления сырья, роста его коксогенности требуется все большая интенсификация процесса путем одновременного повышения температуры и сокращения продолжительности контакта сырья с катализатором. При сохранении глубины процесса постоянной наблюдается уменьшение выхода кокса на 20-30% и повышение выхода остальных продуктов. На многих заводах каталитическому крекингу подвергают мазуты и гудроны, содержащие до 50 млн 1 металлов при температуре в низу лифт-реактора 600 С и продолжительности контактирования не более 2 с. Дальнейшая интен-сификаххия процесса сдерживается ростом доли реакций термического крекинга, выхода сухого газа и ослаблением реакций Н-переноса. Таким образом, можйо сделать вывод, что многие каталитические процессы можно интенсифицировать за счет подбора для каждой пары катализатор-сырье соответствующей глубины превращения, повышения температурь и сокращения времени контактирования сырья с катализатором. [c.101]

    Из новых исследовательских работ, опубликованных уже в военный период, большой интерес представляет низкотемпературная полимеризация изобутилена [38]. Это управляемый (изменениями температуры полимеризации и чистоты исходного изобутилена) процесс, который по желанию может быть направлен как на синтез полужидких полимеров — эксанолов, так II на высокомолекулярные твердые полимеры — виста-нексы, которым приписывается строение линейных полимеров изобутилена [c.471]

    Так как коагулировавшийся твердый полимер имеет тенденцию с течением времени полимеризоваться более глубоко, то к нему в качестве антиполимеризующрго агента добавляют фенил- -пафтиламин в количестве 2% по весу. [c.473]

    Оказывается, что расплавленные полимеры изотропны по отношению к процессу теплопроводности, поэтому значения коэффициентов теплопроводности, приведенные в табл. 1, применяются для всех направлений. Эксперименты на образцах из деформированных твердых полимеров [1] демонстрируют более высокие значения теплопроводности в направлении, параллельном деформации, по сравнению с теплопроводностью в направлении, перпендикулярпом деформации. Эти различия достаточно сильны в полимерах, способных к кристаллизации, где возможна разница на порядок величины в двух направлениях. Однако в стекловидных полимерах влияние ориентации на X [c.328]

    В. Теплоемкость. Теплоемкость характеризует подвижность повторяющихся элементов макромолекулы и ее изменений при фазовых (кристаллизация, плавление) или физических (стеклование) переходах. Застеклованные аморфные полимеры имеют, как правило, линейную зависимость от (Т). Вблизи Tg наблюдается положительный скачок АСр= (11,3- -12,2)Дж/(моль-К). Весьма полезны эмпирические соотношения [32] СрТ = 115 кДж/кг и ЛxTg== 0,llЗ. При плавлении кристаллических полимеров Ср сильно возрастает, а затем резко снижается до значения, превышающего теплоемкость твердого полимера. Для расплавов справедлива линейная зависимость [c.185]

    Б. Получение полиэтилена из этилена по методу Amo o hemi als ompany Образование твердых полимеров из мономеров, предварительно подвергнутых очистке, происходит в каком-либо растворителе полиэтилена (циклогексене, декалине, бензоле, ксилолах или "непахнущих спиртах") при температурах 240-300°С и давлении 35-100 атм в присутствии смешанных окисных катализаторов и сокатализаторов. По окончании полимеризации избыток мономера удаляют, раствор полимера фильтруют, чтобы отделить от катализатора. Катализатор промывают горячим растворителем для более полного отделения полимера. Твердый полимер отделяют от растворителя /7, 25, [c.117]

    Реакция начиналась при температуре 70—90 " п протекала при 150°. В течение 6 —10 час. превращалось около 35—40% этилена. При применении раствора едкого патра вместо едкого кали этилена превращалось всего 20%. Эту реакцию можно осуществить и в большем масштабе, пропуская водный раствор указанных компонентов вместе с этиленом через подогреватель в обогреваемый реактор полимеризации (полимеризатор), работающий нод давлением 200—300 ат. Применение других эмульгаторов не дает су цествеппых преимуществ. Полимеризация может также протекать в присутствии органических растворителей. При добавке более 50% метанола образуются твердые полимеры. [c.573]

    Полимерные цепи (вне зависимости от регулярности их строения) под влиянием.теплового движения и межмолекулярного взаимодействия ассоциируются во флуктуационные, более или менее упорядоченные пачки. Пачки под влиянием теплового движения то воссоздаются, то распадаются. Однако вследствие больших размеров макромолекул время жизни пачек может быть весьма большим. Если продолжительность жизни роя молекул низкомолекулярной жидкости составляет 10" с и менее, то в случае твердого полимера она возрастает до многих лет. Чем менее гибим макромолекулы, тем больше время жизни пачек. [c.153]

    В настоящее время полимеризация низших олефинов в присутствии различных катализаторов изучена достаточно хорошо. Процессы полимеризации используют для получения бензина (полимер-бензины), смазочных масел, синтетических каучуков, синтетических волокон и, как уже было указано выше, твердых полимеров типа полиэтилена. Катализаторами являются чаще всего H..SO4, Н3РО4, Al lg, BFg и HF. [c.592]

    И. П. Лосев, О. Я. Федотова и Е. Б. Тростянская [21] установк-ли, что феноксиэтилен в присутствии BFg (если вести реакцию при температурах от —80 до —10") превращается в клеи, каучукообразные соединения или твердые полимеры. [c.598]

    При полимеризации хлористого винила, как показал еще И. И. Остромысленский (1912 г.), получаются твердые полимеры, для одного из которых он установил формулу 32H48 ljg. В настоящее время из хлористого винила получают в производственном масштабе полимеры в виде белого негорючего порошка с высокой химической стойкостью. Он термопластичен и на холоду не растворим во многих органических растворителях. Полимеризацию хлористого винила можно вести при высокой температуре, получше и быстрее— каталитически в присутствии растворителей. В качестве катализатора обычно применяют перекись бензоила. [c.610]

    Подобно хлористому винилу, полимеризуется и хлористый винилиден, образуя бесцветные твердые полимеры, но чаще его сопо-лимеризуют с хлористым винилом (см. саран, стр. 638). [c.611]

    При восстановлении над СиСг-катализатором под давление. получаются соответствующие полиспирты без разрыва основной углеродной цепи. При действии на поликетоны H N в присутствии твердого K N получается желтый твердый полимер, анализ которого показывает, что 80% карбонильных групп превращается в оксинитрильные. При окислении азотной кислотой получается смесь двухосновных карбоновых кислот, показывающая, что в поликетонной цепи кето-группы распределены неупорядоченно. [c.732]


Библиография для Твердые полимеры: [c.52]   
Смотреть страницы где упоминается термин Твердые полимеры: [c.315]    [c.635]    [c.101]    [c.325]    [c.601]    [c.472]    [c.61]    [c.311]    [c.352]    [c.598]    [c.619]    [c.189]   
Смотреть главы в:

Экспериментальные методы в химии полимеров - часть 1 -> Твердые полимеры

Экспериментальные методы в химии полимеров Ч.1 -> Твердые полимеры

Реология полимеров -> Твердые полимеры

Физическая и коллоидная химия -> Твердые полимеры


Практическое руководство по синтезу и исследованию свойств полимеров (1976) -- [ c.32 ]

Реология полимеров (1966) -- [ c.51 , c.65 ]

Химия высокомолекулярных соединений Издание 2 (1966) -- [ c.230 ]

Основы технологии синтеза каучуков Изд3 (1972) -- [ c.235 ]




ПОИСК







© 2025 chem21.info Реклама на сайте