Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия нержавеющих сталей под напряжением

    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен. [c.215]

    Эти кислоты можно получить в лаборатории, пропуская сероводород через воду, насыщенную ЗО . Для понимания механизма наблюдаемых разрушений следует учесть, что при протекании коррозионных процессов эти кислоты легко катодно восстанавливаются. В связи с этим политионовые кислоты действуют в качестве катодного деполяризатора, который способствует растворению металла по границам зерен, обедненным хромом. Еще одна форма влияния, возможно, заключается в том, что продукты их катодного восстановления (НгЗ или аналогичные соединения) стимулируют абсорбцию межузельного водорода сплавом, обедненным хромом. Под напряжением этот сплав, если он имеет ферритную структуру, подвергается водородной коррозии вдоль границ зерен. Аустенитный сплав в этих условиях устойчив. Показано, что наличие в морской воде более 2 мг/л серы в виде На З либо продуктов катодного восстановления сульфитов 50з" или тиосульфатов ЗзО вызывает водородное растрескивание высокопрочных сталей о 0,77 % С, а также ферритных и мартенситных нержавеющих сталей [67]. Предполагают, что и политионовые кислоты оказывают аналогичное действие. [c.323]

    Анодная защита может предотвращать локальные виды коррозии, например, межкристаллитную коррозию нержавеющих сталей, коррозию под напряжением углеродистых и нержавеющих сталей, питтинг, коррозионную усталость металлов и сплавов. [c.199]


    Особым видом коррозии нержавеющих сталей является так называемая щелевая коррозия, которой раньше уделялось мало внимания. Щелевая коррозия происходит в узких зазорах между металлами (например, между болтом и гайкой) или между металлом и неметаллическим материалом (например, прокладкой). Часто щелевая коррозия начинается в волосных и более крупных трещинах, которые образуются на изделии из нержавеющей стали в результате ошибок, допущенных при его изготовлении, или в результате коррозии под напряжением. [c.151]

    Наиболее типичным примером появления локальной коррозии из-за структурных особенностей металла является межкристаллитная коррозия нержавеющих сталей и алюминиевых сплавов. Большая скорость ионизации металла по границам зерен или интерметаллических соединений приводит к преимущественному растворению этих участков, вследствие чего ослабляется связь между отдельными кристаллами. Дефекты в кристаллической решетке, концентрация внутренних напряжений, которые способствуют более легкой ионизации атомов металла, также приводят к локальной коррозии. [c.13]

    КОРРОЗИЯ НЕРЖАВЕЮЩИХ СТАЛЕЙ В НАПРЯЖЕННОМ СОСТОЯНИИ В ВОДЕ ПРИ ВЫСОКОЙ ТЕМПЕРАТУРЕ [c.234]

    Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции Т + + 2ё Л составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов Т " [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует ТЮ . Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Т , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение (Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией. [c.372]

    Большое влияние на межкристаллитную коррозию нержавеющих сталей оказывают напряжения, возникающие на границе кристаллитов в связи с выпадением карбидов. [c.71]

    Коррозия нержавеющих сталей под напряжением 71 [c.71]

    КОРРОЗИЯ НЕРЖАВЕЮЩИХ СТАЛЕЙ ПОД НАПРЯЖЕНИЕМ [c.71]

    Коррозия нержавеющих сталей под напряжением..............71 [c.650]

    По данным Фонтана [98], напряжения не увеличивают скорости коррозии нержавеющей стали типа 17-7 в дымящейся азотной кислоте при повышенной температуре. [c.55]

    I — коррозионно-стойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферно-й, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением н др.  [c.225]

    Катодная защита резервуаров с горячей водой, изготовленных из коррозионностойкой (нержавеющей) стали, в принципе тоже возможна. Она целесообразна в первую очередь в тех случаях, когда требования DIN 50930 [3] в отношении свойств материала и содержания ионов хлора в воде не выдерживаются. При использовании магниевых протекторов с изолированной проводкой можно отрегулировать ток промежуточным включением сопротивлений до требуемой малой величины защитного тока, обеспечивающей предотвращение язвенной коррозии. Поскольку защитный потенциал высоколегированных хромоникелевых сталей согласно разделу 2.4 составляет примерно 0н=0,0 В, в качестве протекторов могут быть применены также алюминий, цинк и железо, так как даже и при пассивации этих материалов движущее напряжение остается достаточно большим. [c.402]

    Успехи, достигнутые в коррозионной науке и технике машиностроения с момента выхода первого издания, требуют обновления большинства глав настояш,ей книги. Детально рассмотрены введенное недавно понятие критического потенциала питтингообразования и его применение на практике. Соответствующее место отводится также критическому потенциалу коррозионного растрескивания под напряжением и более подробному обзору различных подходов к изучению механизма этого вида коррозии. Раздел по коррозионной усталости написан о учетом новых данных и их интерпретации. В главу по пассивности включены результаты новых интересных экспериментов, проведенных в ряде лабораторий. Освещение вопросов межкристаллитной коррозии несенсибилизированных нержавеющих сталей и сплавов представляет интерес для ядерной энергетики. Книга включает лишь краткое описание диаграмм Пурбе в связи с тем, что подробный атлас таких диаграмм был опубликован профессором Пурбе в 1966 г. [c.13]


    Некоторые из предложенных объяснений склонности ферритных нержавеющих сталей к межкристаллитной коррозии основаны на разнице скоростей растворения различных образующихся карбидов или на предполагаемой большей реакционной способности напряженной кристаллической решетки металла. Однако наиболее убедительное объяснение получено с помощью теории, широко используемой для объяснения этих явлений в аустенитных нержавеющих сталях. Согласно этой теории, разрушения происходят вследствие обеднения границ зерен хромом [36—38]. Различия в температурах и времени, необходимых для сенсибилизации этих сталей, объясняются более высокими скоростями диффузии углерода, азота и хрома в ферритной объемно-центрированной кубической решетке по сравнению с аустенитной гранецентрированной. В соответствии с этим, карбиды и нитриды хрома, которые растворены при высокой температуре, ниже [c.310]

    Особенности анодного электрохимического поведения нержавеющей стали обусловлены различным значением химического потенциала металла на разных стадиях деформации, которые определяются дислокационной, субструктурой, формируемой в процессе деформации и вызывающей деформационное упрочнение. Поскольку напряжение пластического течения металла является величиной доступной для простых измерений, установленная связь электрохимических свойств стали с сопротивлением деформации позволяет в некоторой мере оценивать механохимическую коррозию по физико-механическим свойствам стали. [c.86]

    Таким образом, в области активного растворения нержавеющая сталь после токарной обработки ведет себя аналогично конструкционной стали и ее коррозионная стойкость определяется уровнем остаточных напряжений и микроэлектрохимической гетерогенностью поверхности. Эти параметры зависят от режимов обработки и могут 1ть приведены к оптимальным значениям подбором режимов резания по электрохимическим показателям. Действительно, измеренные значения скорости коррозии обработанной поверхности стали оказались минимальными для оптимального режима П1. [c.189]

    Нержавеющие стали в целом находят весьма ограниченное применение в морских условиях. Успешное их применение основывается на контроле окружающей среды с целью поддержания пассивности металла пли же подразумевает защитные меры, препятствующие местной коррозии. Нержавеющие стали обычно стошш в морских атмосферах, где на от крытой незащищенной поверхности сохраняется пассивная пленка. Благоприятны для поддержания пассивности и условия в быстром потоке морской воды. В спокойной морской воде причиной разрушения металла часто является местная коррозия, в частности ппттинг. Наблюдается также коррозионное растрескивание под напряжением. Однако прп правильном выборе типа сплава, а также режимов упрочнения п старения высокопрочные нержавеющие стали стойки в морских атмосферах. [c.57]

    Для обеспечения долговечности химической аппаратуры важно также найти наиболее рациональный режим осуществления технологического процесса. Иногда достаточно снизить температуру среды на 10—20 град, чтобы уменьшить скорость коррозии до приемлемых значений, в другом случае достаточно изменить напряжение и скорость потока электролита и т. д. В частности, в холодильниках (конденсаторах), изготовленных из нержавеющих сталей, не безразлично, куда пустить поток охлаждающей воды. Ее следует направить по трубкам, где скорость высокая, а не в межтрубное пространство, где скорости движения воды невелики. Объясняется это тем, что скорость коррозии нержавеющих сталей зависит от скорости движения электролита. Так, например, скорость коррозии нержавеющей стали 1Х18Н9Т в спокойной морской воде составляет 1,85 мм год, а в движущейся (1,2—1,5 м сек) всего лишь 0,05—0,1 мм год [14]. [c.440]

    Наряду с теорией обеднения границ зерен хромом при выделении карбидов существуют и другие точки зрения на причину появления склошюсгн к межкристаллитной коррозии нержавеющих сталей выделение богатого хромом феррита, интерметаллических соединений, 0-фазы, возникновение при выделении новой фазы напряжений и др. Однако наиболее обоснованной является теория обеднения границ зерна хролюм. [c.155]

    Точечная и язвенная коррозия нержавеющих сталей, присущая, как правило, их неустойчивому пассивному состоянию, не позволяет рекомендовать эти стали в качестве конструкционного материала для изготовления фильтрпресса ФПАКМ. На рис. 2 показано растрескивание напряженного образца стали 12Х18Н10Т после 11 570 часов испытаний. [c.46]

    Исследованы причины коррозионного износа оборудования (декарбона-горов) в процессе получения содового раствора из бикарбонатной суспензии яа содовых заводах. Приведены результаты коррозионных испытаний в лабораторных и производственных условиях чугунов, нержавеющих сталей и титана. Установлено, что основными факторами, вызывающими коррозию этих материалов, являются эрозионное действие бикарбонатной суспензии, наличие ионов восстанавливающей серы, кислорода. Сварка и напряжения в металле усиливают коррозию нержавеющих сталей. Рекомендуются материалы для изготовления промышленного аппарата. [c.98]

    Растрескивание нержавеющих сталей. Межкристаллитная коррозия нержавеющих сталей, часто наблюдаемая вблизи сварных швов и, по-видимому, связанная со слоями, обедненными хромом, вследствие выделения карбидов хрома, была описана на стр. 202. Другой характер разрушения, преимущественно транскристаллитный, встречается в тех случаях, когда напряженная нержавеющая сталь подвергается воздействию концентрированного раствора хлоридов. Этот вид разрушения не является следствием термической обработки, в результате которой твердый раствор обедняется хромом. Большинство исследователей для изучения этого явления применяют концентрированный раствор хлористого магния. В то время как в своей основе коррозионное растрескивание алюминиевых сплавов представляет собой механическое разрушение, которому способствует химическое воздействие, коррозионное растрескивание аустенитных нержавеющих сталей, по-видимому, представляет собой по существу электрохимическое растворение металла в узкой зоне роль механических напряжений в этом случае, вероятно, заключается в увеличении расстояния между атомами вблизи острия продви- [c.623]

    При локализации межкристаллитного коррозионного процесса (при коррозии под напряжением) возможно появление не только межкристаллитных трещин коррозионного растрескивания, как это наблюдается, например, для сплавов на основе алюминия. Реншоу [147] наглядно показал, что при локализации межкристаллитной коррозии нержавеющей стали 18-8 и наличии растягивающих напряжений межкристаллитные надрезы могут давать начало внутрикристаллитным трещинам, что иногда приводит к изменению межкристаллитного характера коррозионной трещины на внутрикристаллитный (фиг. 111). [c.137]

    Латуни в условиях эксплуатации склонны иногда к специфическому разрушению, получившему наименование коррозионного растрескивания [4—6,21—23]. От коррозионного растрескивания сильно страдают штампованные детали (патронные гильзы), изделия, получаемые волочением (трубки). Коррозионное растрескивание всегда связано с наличием в силаве растягивающих напряжений, обусловленных внутренними напряжениями или приложенными извне нагрузками. Подобное разрушение может протекать как межкристаллитно, так и транскристаллитно. Но даже когда коррозионное растрескивание протекает преимущественно межкристаллитно, оно отличается по своему механизму от межкристаллитной коррозии нержавеющих сталей, так как непременным условием коррозионного растрескивания является наличие растягивающих напряжений. [c.532]

    Способность сплавов на основе кобальта противостоять фреттинг-коррозии обусловила успешное использование виталлиума при имплантации в органы человека. Уотерхаус 13] показал, что, если винты из виталлиума, завинченные в металлические пластины, подвергнуть воздействию переменного напряжения (испытание головки винта на трение), то они меньше разрушаются в солевых растворах, чем изготовленные из нержавеющей стали. [c.371]

    Коррозионное растрескивание реализуется как при статяческом, так и при циклическом нагружениях. Отметим, что растрескивание возможно и при отсутствии механических напряжений - межкристаллитная коррозия некоторых нержавеющих сталей и сплавов [37, 47, 48]. Естественно, межкристаллитная коррозия усиливается при наложении внешних силовых нагрузок. [c.16]

    Недостаток аустенитных нержавеющих сталей — их склонность к коррозии под напряжением в морской воде. Однако стойкость их несколько повышается при увеличении содержания никеля. Например, сплав Инколой состава [c.21]

    Ионы тяжелых металлов, особенно свинца, уменьшают не только общую коррозию, но и локальную. Так, есть сведения, что малые добавки ионов свинца почти полностью подавляют коррозионное растрескивание нержавеющей стали под напряжением и в условиях активного растворения в серной и азотной кислотах [214]. При эффективных концентрациях ионов свинца (10- — 10- моль/л) равновесные потенциалы свинца отрицательнее стационарного потенциала нержавеющей стали и поэтому контактное выделение с образованием фазового осадка здесь исключено и на поверхности стали возникает лишь субмономолекулярный слой свинца. Природа этого процесса еще окончательно не выяснена, но реальность процесса несомненна [209 238]. [c.88]

    Столь значительный сдвиг потенциала анодного нарушения пассивного состояния (потенциала пробоя ) в сторону отрицательных значений для пришовной области ведет к особой опасности локального нарушения пассивности в тех коррозионных средах, где нержавеющая сталь при отсутствии напряжений находится в устойчивом пассивном состоянии, с образованием условий для усиленной локальной коррозии (в том числе коррозионного растрескивания) при наличии коррозионных гальванопар на поверхности сварного соединения типа активная пришовная зона — пассивная остальная поверхность. [c.223]

    Для зон умеренной коррозии трубопроводы и технологическое оборудование изготовляют в основном из спокойных углеродистых сталей типа марки 20, а для зон опасной коррозии в некоторых случаях вводят термическую обработку труб на заводах-изгото-вителях и сварных щвов при монтаже. Кроме того, при расчете стенок труб и аппаратов этой зоны принимают увеличенную толщину стенки с целью снижения внутренних напряжений. В исключительных случаях для наиболее коррозионно опасных сред при изготовлении труб (например, для фонтанной арматуры) допускается применять нержавеющую сталь. [c.13]


Смотреть страницы где упоминается термин Коррозия нержавеющих сталей под напряжением: [c.790]    [c.285]    [c.315]    [c.309]    [c.317]    [c.233]   
Смотреть главы в:

Коррозия металлов Книга 1 -> Коррозия нержавеющих сталей под напряжением




ПОИСК





Смотрите так же термины и статьи:

Коррозия под напряжением

Коррозия под напряжением нержавеющих

Коррозия под напряжением сталей

Нержавеющие под напряжением

Сталь нержавеющая

нержавеющей



© 2025 chem21.info Реклама на сайте