Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакторы для процессов с различными механизмами

    Изотопы находят широкое применение в научных исследованиях, где они используются как меченые атомы для выяснения механизма химических и, в частности, биохимических, процессов. Для этих целей необходимы значительные количества изотопов. Стабильные изотопы получают выделением из природных элементов, а радиоактивные в большинстве случаев с помощью ядерных реакций, которые осуществляются искусственно в результате действия на подходящие элементы нейтронного излучения ядерных реакторов или мощных потоков частиц с высокими энергиями, например дейтронов (ядер дейтерия й), создаваемых ускорителями. Один и тот же изотоп можно получить различными путями. Так, например, для получения радиоактивных изотопов водорода, углерода, фосфора и серы, наиболее широко используемых в практике биологических исследований, осуществляются следующие ядерные реакции  [c.26]


    Формальной кинетикой называется раздел химической кинетики, в котором рассматривается количественное описание хода химической реакции во времени при постоянной температуре в зависимости от концентрации реагирующих веществ. Знание кинетических характеристик химических процессов имеет большое практическое и теоретическое значение, так как позволяет рассчитывать реакторы и различную химическую аппаратуру и находить наиболее общие методы выяснения механизма реакции, открывая пути для сознательного управления и совершенствования существующих и создания новых технологических процессов. [c.309]

    Дезактивация катализаторов из-за ее большой практической важности привлекала и привлекает внимание исследователей. Однако в литературе существует некоторая путаница в понимании различных механизмов дезактивации. Часто результаты, полученные для одного из ее возможных механизмов, ошибочно применяются к другому, что приводит к неверным прогнозам в поведении катализатора. В настоящей монографии ставится задача рассмотрения совместно химических и технологических аспектов дезактивации гетерогенных катализаторов. Несмотря на то что химические и физические процессы, такие как отравление и спекание, обсуждаются в монографии каждый в отдельности, вся проблема протекания химической реакции, осложненной диффузией и дезактивацией катализатора, рассмотрена также в совокупности. Естественен переход к анализу работы реактора и выбору оптимального режима его эксплуатации, минимизирующему влияние дезактивации, В заключение рассмотрены вопросы регенерации катализаторов, восстанавливающей их активность. [c.18]

    Реакторы для процессов с различными механизмами  [c.419]

    В последующих главах будут рассмотрены общие вопросы дезактивации катализаторов и различные механизмы этого процесса. Затем будет проведен анализ динамики дезактивации в каталитических реакторах и найдены оптимальные режимы их эксплуатации, а также регенерации катализаторов. [c.22]

    Формально результат воздействия обратной связи на ход каталитического процеса в математических моделях автоколебаний учитывается различными путями. В основу гетерогенно-каталитических моделей обычно полагается механизм Лэнгмюра—Хиншельвуда с учетом формального отражения а) зависимости констант скорости отдельных стадий реакции от степеней покрытия адсорбированными реагентами [93—98] б) конкуренции стадий адсорбции реагирующих веществ [99—103] в) изменения во времени поверхностной концентрации неактивной примеси или буфера [104—107] г) участия в стадии взаимодействия двух свободных мест [108] д) циклических взаимных переходов механизмов реакции [109], фазовой структуры поверхности [110] е) перегрева тонкого слоя поверхностности катализатора [100] ж) островко-вой адсорбции с образованием диссипативных структур [111, 112]. К этому следует добавить модели с учетом разветвленных поверхностных [113] гетерогенно-гомогенных цепных реакций [114, 115], а также ряд моделей, принимающих во внимание динамическое поведение реактора идеального смешения [116], процессы внешне-[117] и внутридиффузионного тепло-и массопереноса I118—120] и поверхностной диффузии реагентов [121], которые в определенных условиях могут приводить к автоколебаниям скорости реакции. [c.315]


    Идеализированный подход к созданию оптимального полимеризационного процесса можно сформулировать следующим образом требуемые свойства полимерного материала коррелируют с соответствующей молекулярной структурой. Параметры молекулярной структуры увязывают с кинетикой и механизмом процесса. Исследования механизма позволяют в свою очередь составить математическую модель процесса. Моделирование на ЭВМ заменяет дорогостоящие и длительные эксперименты на пилотных и опытных установках различного масштаба. Оно позволяет сравнить различные способы ведения процесса и типы реакторов с тем, чтобы выбрать оптимальный вариант, обеспечивающий выход продукта с желательной структурой. Введение в модель макрокинетических зависимостей, уравнений переноса тепла и массы, полученных из анализа соответствующих физических моделей, позволяет решить проблему масштабирования реактора. Полученные данные используются как основа при проектировании конкретного процесса. [c.330]

    В зависимости от того или иного объяснения механизма реакции предлагались различные конструкции реакторов и различные схемы процесса. [c.55]

    Исследуем несколько типовых постановок усредненных оптимальных задач для различных механизмов химических реакций [14]. Процессы предполагаем изотермическими, проводимыми Б реакторе идеального смешения с постоянным объемом V, [c.115]

    Настоящий сборник содержит около 70 статей, посвященных актуальным вопросам гидродинамики двухфазных систем (взвешенный слой, барботаж), тепло- и массопередачи в химической аппаратуре, применительно к процессам ректификации, абсорбции, экстракции, адсорбции, сушки, ионного обмена и другим. В сборнике приведены данные по теории и практике этих процессов, а также изложены методы расчета новых высокопроизводительных аппаратов (ректификационных колонн, экстракторов, абсорберов, адсорберов и химических реакторов). Читателям предоставлена возможность сопоставить и сравнить идеи ведущих в этой области науки ученых и их сотрудников, отражающие различные взгляды на обобщение кинетических закономерностей и механизм процессов, различные подходы к обработке экспериментальных данных и расчету аппаратуры. [c.3]

    Реакция окисления бензола в малеиновый ангидрид и реакции окисления нафталина и о-ксилола во фталевый ангидрид ускоряются катализаторами различного типа на основе пятиокиси ванадия. Эти реакции положены в основу важных промышленных процессов и изучались они в основном с точки зрения получения кинетических данных для конструирования подходящих каталитических реакторов. При изучении механизмов этих частных реакций и влияния поверхности катализатора большую роль сыграли исследования механизмов каталитического окисления. Было высказано предположение, что при окислении бензола в малеиновый ангидрид образуются различные промежуточные соединения, нанример фенол, гидрохинон и хинон. Диксон и Лонгфилд [4] предположили, что по такому пути происходит окисление всего лишь около 10% бензола, тогда как большая его часть одновременно окисляется в малеиновый ангидрид, а также в окись и двуокись углерода. Сообщалось также, что окисление нафталина происходит путем одновременно идущих реакций с образованием фталевого ангидрида. [c.329]

    В-третьих, в реакторах для проведения гетерогенных и гетеро-генно-каталитических процессов имеет место различный характер границы раздела фаз, тип массопередачи и, следовательно, ее механизм, хотя во всех случаях химической реакции предшествует перенос вещества через границу раздела фаз. [c.12]

    Для вывода уравнений реакторов, рассматриваемых в данной главе, нужно установить выражения для скорости каталитического процесса, которые учитывали бы совокупность явлений, происходящих при проведении такого процесса. Поэтому возникает необходимость обсуждения механизма каталитических действий. Так как этот вопрос рассмотрен в очень многих работах, не будем повторять здесь их содержание. Следует только отметить, что развитие теории гетерогенного катализа приводит к установлению различных типов кинетических уравнений общего и частного характера. [c.214]

    Рассмотренный механизм коксования показывает, что на процесс влияют различные факторы химический состав сырья склонность к мел молекулярным взаимодействиям, те.мпература входа вторичного сырья в реактор длительность пребывания продуктов в реакторе, давление в зоне реакции коэффициент рециркуляции и др. Влияние этих факторов подробно описано в работе [112]. [c.186]

    Любая методика расчета основывается на теоретических или гипотетических представлениях о механизме и природе течения того или иного процесса. Во второй главе были рассмотрены результаты экспериментов на различных конструкциях термокаталитических реакторов двух типов химических реакций. Эти реакции связывает между собой не только то, что они проводились в вихревых реакторах, но и то, что концентрация углеводородов достаточно мала и реакции проводятся в объеме инертного газового компонента. Процесс окисления углеводородов осуществлялся на поверхности катализатора до их полного разложения на СО и Н О, процесс пиролиза проводился в объеме водяного пара, другом типе катализатора, и задачей являлось их разложение до фракции (С - -С ), однако механизм взаимодействия с катализатором можно считать аналогичным при рассмотрении течения этих процессов в условиях высокоскоростного закрученного движения газового потока в реакторе. [c.282]


    Теория моделирования полимеризационных процессов предъявила особые требования к скорости проведения и точности фракционирования. Первое условие вытекает из необходимости проведения десятков и сотен анализов ММР при исследовании механизма процесса в лаборатории и на установках различного масштаба. До последнего времени технологи обычно удовлетворялись измерением средних (чаще средневязкостных) молекулярных масс, полагая, что при стабильном технологическом режиме работы реактора ММР продукта остается более или менее постоянным. Степень отклонения ММР при возможных колебаниях режима пока не изучена ни для одного техно- [c.333]

    Химическая кинетика изучает химические превращения веществ как процесс, протекающий по определенному механизму с характерными для него закономерностями во времени. Объектами химической кинетики служат реакции, в которых принимают участие различные реакционные частицы, в том числе — молекулы, ионы, радикалы, комплексы и т. д. Кинетические данные дают возможность уточнить механизм реакции, выявить корреляционные зависимости между реакционной способностью молекул и их строением они необходимы при проектировании реакторов для химического синтеза, при разработке новых и модернизации старых технологических процессов. [c.329]

    Первые данные о гетерогенно-гомогенных процессах окисления различных веществ были получены более 30 лет назад, Такой механизм был обнаружен при глубоком окислении пропилена на платине, нанесенной на сульфат бария и хромит магния [73]. Аналогичный механизм в реакции окисления бензола на алюмоплатиновом катализаторе и платиновой фольге [74] был зафиксирован методом раздельного калориметрирования при концентрации бензола 0,1 и 0,2 М (100 °С) между катализатором и объемом в проточном реакторе наблюдался перепад температур 1,4 и 4,3 °С соответственно, что указывает на протекание реакции по гетерогенно-гомогенному механизму. При 200 °С доля гомогенной составляющей процесса глубокого окисления возрастает. [c.77]

    Боресков указывает [370], что по своей активности, отнесенной к единице веса, платина превосходит все известные катализаторы окисления ЗОг. Поэтому платина, нанесенная на различные носители (асбест, сульфат магния, силикагель) до недавнего времени широко применялась как промышленный катализатор в производстве серной кислоты [3701. В ходе изучения кинетики и механизма реакции окисления 50г установлено, что ее лимитирующим этапом является адсорбция ЗОз на поверхности платины, покрытой адсорбированным кислородом, продукт реакции — 50з — связан с поверхностью контакта настолько сильно, что это тормозит адсорбцию кислорода и тем самым скорость всего процесса [109]. В результате кинетических исследований Боресковым выведено уравнение, удовлетворительно описывающее полученные экспериментальные данные. Это уравнение может быть использовано для расчета необходимого для загрузки в промышленный реактор количества катализатора. [c.267]

    Приведенные данные можно интерпретировать таким образом, что гетерогенный фактор по-разному влияет на различные направления распада, но ускоряет только реакцию дегидрирования бутана, которая, по-видимому, не имеет отношения к развитию цепного процесса. Остальные реакции замедляются при увеличении гетерогенного фактора, и, следовательно, гетерогенное зарождение радикалов играет незначительную роль. Для объяснения результатов, полученных при изучении совместного влияния ингибиторов и набивки реактора на кинетику и механизм термического распада алканов, можно предположить, что при гомогенном зарождении радикалов происходит также частичное увеличение активности стенок реактора в реакции гетерогенного обрыва цепей [c.358]

    Для изучения процессов окисления углеводородов и их смесей, исследования механизма и кинетических закономерностей этих процессов используют методы окисления простых или более сложных систем в присутствии катализаторов или ингибиторов либо без них. Для этой цели применяют различные лабораторные реакторы [1], позволяющие изменять условия окисления и состав смесей по ходу процесса, инициировать образование свободных радикалов воздействием света или добавлением различных химических веществ, вводить ингибиторы окисления [1—4]. Ниже рассмотрены только те [c.253]

    Вторичное окисление окиси этилена также является каталитическим процессом, хотя не исключено, что он протекает по гетерогенно-гомогенному механизму [38]. Последний может играть более важную роль в промышленных реакторах, работающих при высокой температуре и большой скорости тепловыделения, когда определенная часть катализатора перегревается и появляются источники свободных радикалов. Некоторое различие в селективности, наблюдаемое при окислении воздухом и кислородом, можно связать с различной способностью газообразных азота и углеводорода адсорбировать свободные радикалы [39], т. е. обрывать радикальные цепи. Хотя свободнорадикальный механизм не доказан, с ним может быть связан, по мнению автора, резкий рост температуры, начинающийся при перегреве катализатора. Можно предположить, что на перегретом катализаторе свободные радикалы образуются при разложении соединений пероксидного типа. К ним относится молекулярно-адсорбированный кислород, который десорбируется в реакционноспособной форме, подобной синглетному кислороду [40], как и кислород, образующийся при разложении пероксидов  [c.231]

    Интересно отметить, что после регенерации изомеризация 2-метил-бутена-1 в 2-метилбутен-2 протекала с более высоким выходом, чем до отравления хинолином. После нескольких последовательных впусков исходного газа активность катализатора возвращалась в первоначально стабильное состояние. Полученные данные рисуют своеобразную картину отравления Bi—Мо-катализатора. Хинолин сильнее всего подавляет глубокое окисление, затем окислительное дегидрирование и меньше всего изомеризацию (см. VI.72). Сходные результаты были получены при изучении падения активности катализатора в опытах, когда в реактор вводили изоамилены без кислорода. Поскольку падение активности в случае бескислородных импульсов связано с обеднением поверхности катализатора кислородом решетки (0 ), можно предположить, что при отравлении хинолином имеет место блокировка ядом этих центров. Это может быть также следствием качественной неоднородности новерхности по отношению к исследованным процессам, идущим на разных центрах при любом механизме понижения активности или следствием блокировки центров. Другая возможность заключается в различной чувствительности к действию контактных ядов на разные реакции на одних и тех же центрах. Выбор между этими возможностями применительно к каждой из реакций требует дополнительных исследований. [c.367]

    Спекание является физическим процессом. Оно сопровождается потерей поверхности активного компонента катализатора и возникает, если процесс проводится при более высоких, чем это необходимо, температурах. Нежелательное цовышение температуры может иметь место либо во всем реакторе, либо быть локализовано в какой-нибудь его части. В зависимости от используемого типа катализатора можно различить два различных механизма спекания. [c.19]

    А что делать, если мы не знаем механизма влияния физических процессов на процессы химические и не умеем управлять физическими процессами в реакторе В этом случае возникают различные приближенные методы нолурасчета-полуоптимизации, основу которых, как правило, составляет отказ от учета влияния физических процессов, попытка провести расчет и оптимизацию работы реактора на основе данных химической кинетики. [c.21]

    Исследование реакторов для систем газ—жидкость с целью их эасчета и проектирования ведется в следующих направлениях 10] изучение механизма и скорости процесса массопередачи, осложненного химической реакцией моделирование структуры потоков двухфазной системы оценка влияния продольного перемешивания на эффективность реакторов определение межфазной поверхности, удерживающей способности, перепада давления. Важным вопросом является выбор типа реактора. Сравнение коэффициентов массоотдачи по жидкой фазе для систем газ—жидкость в различных реакторах приведено в табл. 4.1 [10]. [c.83]

    Пакеты прикладных программ с ориентацией па проблему являются средством повышения эффективности решения прикладных задач в различных областях народного хозяйства. Их создание базируется на стремлении объединить в единое целое достижения в области решаемой проблемы, вычислительной математики и вычислительной техники. Конечным результатом разработки является программно-аппаратный комплекс, позволяющий пользователю с желаемой точностью, максимальной простотой и удобством решать появляющиеся в процессе его деятельности проблемы. Очевидце, создание таких пакетов — задача не только сложная в смысле формулирования и описания проблемы, разработки необходимых алгоритмов, но и трудоемкая. Для ее решения обычно привлекаются специалисты различных профилей — технологи, математики, программисты. Кроме того, в зависимости от сложности проблемы последняя может быть разделена на отдельные под-проблемы, каждая из которых решается самостоятельно в рамках общей цели. Такое разделение на подпроблемы обычно производится исходя из специфики отдельной части общей задачи. При наличии структурной или функциональной организованности алгоритмов части проблемы она может выступать в качестве подсистемы. При моделировании реакторных процессов, нанример, в качестве отдельных частей можно выделить установление механизма реакции, оценку кинетических констант, модель реактора и т. д. Помимо относительной независимости этих частей можно было бы выделить их и исходя из последовательности использования в процессе моделирования реактора. [c.282]

    С 1955 по 1980 г. по методу Фишера — Тропша работал единственный завод в Сасолбурге (ЮАР). Здесь же продолжались работы по дальнейшему изучению и совершенствованию процесса. Эти и другие исследования, выполненные в то же время в других странах, рассмотрены в обзоре [6], содержащем сведения о разработке различных типов реакторов, теоретических и практических аспектах получения различных продуктов, механизме и кинетике реакции, а также о приготовлении и характеристиках используемых катализаторов. Данная глава посвящена главным образом процессу Фишера — Тропша, реализованному фирмой Сасол с использованием катализаторов на основе железа. Описаны также технологические усовершенствования, внесенные за время его эксплуатации, обсуждаются перспективы производства моторного топлива при сочетании процесса Сасол с другими. Следует заметить, что значительная [c.161]

    Процесс окисления СО исследовался также на нанесенном катализаторе VaOs [22—24]. На входе реактора с неподвижным слоем периодически в виде кусочно-постоянной функции менялось соотношение реагентов P olPo вокруг различных средних величин. Оказалось, что скорость окисления зависит от состава исходной смеси и величины периода колебаний, а при небольших средних значениях отношения Рсо/Ро становится заметным влияние амплитуды. Весьма интересен тот факт, что зависимость средней за цикл скорости химического превращения от длины периода имеет три области резонансных частот, соответствующих t — i—2 15—20 и 40—45 мин. При этих частотах скорость в нестационарном режиме выше, чем в стационарном, в 1,5—2,5 раза. Для объяснения экспериментальных результатов авторы пытались использовать известные из литературы гипотезы о механизме окисления [c.37]

    Химическое превращение, осуществляемое в реакторе путем сложного физико-химического процесса, происходит обычно по уе всегда понятному и лишь частично известному механизму. Это относится как к массопередаче, так и к химической реакции. Например, для массопередачи между двумя песмешивающимися жидкими фазами предложено несколько физических моделей, дающих представление о механизме явления каждая из таких моделей соответствует эксперименту только в определенных условиях работы и лишена смысла, если эти условия меняются. Области применимости различных моделей могут иногда накладываться одна на другую, но чаще всего они не совпадают. [c.17]

    Реакторы, реализующие механизм гетерогенно-гомогенного процесса, (10гут иметь различное устройство (рис.4.2) и монтироваться как самостоятельное устройство в цепи технологических аппаратов или устанавливаться в виде каталитических элементов непосредственно в газоходах, по которым транспортируются отходящие газы (рис. 4.3). [c.122]

    Н. Н. Семенов рассмотрел основные вехи из истории учения о химическом процессе и обратил внимание на то резкое различие, которое существовало между первым периодом развития формальной. оимичеокой кинетики, когда химики искусственно ограничивали поле своих исследований изучением реакций, подчиняющихся простым закономерностям , и последующими периодами, которые характеризовались включением в орбиту исследований все новых термодинамических, гидродинаМ1ических и кинетических факторов, таких, как влияние стенки реактора, примесей, теплоты от экзотермических реа кций, — словом всего того, что отличает реальные процессы от их приближенных идеальных моделей. Нобелевскую лекцию Н. Н. Семенов закончил выводами, подчеркивающими значение исследований в области учения о химическом процессе для развития химической технологии, в частности, для совершенствования способов химической переработки неф пи — окисления и крекинга углеводородов, дегидрогенизации, получения полимеров. Я убежден, — заявил он в заключение, — что необходимо развивать и ускорять работу по изучению механизма различных типов химических реакций. Вряд ли без этого можно существенно обогатить Х1имиче0кую технологию, а также добиться решающих успехов в биологии. Естественно, что на этом пути стоят огромные трудности. Химический процесс есть то основное явление, которое отличает химию от физики, делает первую более сложной наукой. Создание [c.147]

    Метод свободных колебаний используют и для диагностики работающего оборудования, когда свободные колебания возникают из-за механического воздействия рабочих сред и механизмов. Известно, например, о производстве систем дистанционного контроля, предназначенных для обнаружения неисправностей в первом контуре АЭС с легководными реакторами. Эти системы шо-собны обнаруживать повреждения различных элементов АЭС, а также течи, что облегчает их устранение. Работа всех систем основана на сборе и анализе информации о частотном спектре вибраций в диапазоне частот 0,1...10 Гц. Об отклонениях от нормального режима работы судят по появлению аномалий в частотном спектре. Данное направление примыкает к виброакустической диагностике конструкций и механизмов и рассматривается в следующей главе. Многие расчетные соотношения и подходы к анализу получаемой информации сохраняются - изменяется по сути характер возбуждающих сигналов, три-нимающих вид случайного процесса, что обусловливает более широкое привлечение аппарата случайных функций для анализа получаемых данных. [c.154]

    Если управление процессом полностью передоверить машине, не знаюп ей теории критических условий, то, варьируя начальные параметры, машина может незаметно для себя перейти через критическое условие, что уже совершенно недопустимо с точкд зрения техники безопасности. Учесть же критические условия можно только зная внутренний механизм процесса, т. е. отказавшись от концепции черного яш,ика . Далее, как мы видели, одним и тем же значениям внешних параметров могут отвечать несколько различных стационарных режимов, и тогда вывод на желательный режим требует уже не слепого поиска, а сознательного управления . Наконец, проектирование нового реактора никак не может быть выполнено с позиций черного ящика , так как всякое изменение размеров и конструкции сложным образом меняет условия диффузии и теплопередачи и разобраться в следствиях этих изменений можно только зная внутренний механизм процесса. [c.472]

    В дифференциальном реакторе кинетику окисления о-ксилола изучали на ванадий-калий-сульфатном катализаторе, нанесенном на юиликагель. В работе [364] рассм10трвны различные кинетические модели процесса (равновесная и диссоциативная адсорбция, механизм Ридила и Лэнгмюра — Хиншельвуда). [c.243]

    Известно, что в реакторах в качестве замедлителей и особенно теплоносителей широко применяются органические соединения — такие, как дифенил, дифенилоксид, эвтектическая смесь, обоих этих соединений и др. По сравнению с водой органические теплоносители имеют ряд преимуществ малое давление паров, отсутствие корродирующего действия, незначительную активацию и пр. Существенным недостатком органических теплоносителей, однако, является разложение и полимеризация под действием ионизирующей радиации и высокой температуры. С этой точки зрения интересны исследования, направленные на выясненР1е механизма процессов, происходящих при радиолизе органических теплоносителей. В результате воздействия ионизирующих излучений, например, на дифенил образуются фенильный и дифенильный радикалы, при взаимодействии которых друг с другом и с окружающей средой получаются полифенилы (соединения с различным количеством фенильных колец)  [c.117]

    В ряде глав данной монографии уже рассмотрены вопросы, связанные с активными центрами цеолитов, кинетикой и механизмом реакций крекинга на цеолитах (гл. 8 и 9), молекулярно-ситовыми эффектами в катализе (гл. 12), диффузионными явлениями в ходе этих реакций (гл. 7), поэтому мы подобных проблем касаться не будем. В данной главе описаны отдельные стадии процесса приготовления цеолитных катализаторов крекинга в лабораторных условиях и в промышленности и проанализированы причины разной активности и селективности катализаторов, дезактивированных в лаборатории и в действуюших промышленных установках. В настоящее время в промышленности используют новые модели реакторов, позволяющие оптимизировать условия переработки на цеолитсодержащих катализаторах различного по качеству сырья, поэтому также обсудим особенности новых технологических схем. [c.221]

    Изучено окисление бутана в реакторе из нержавеющей стали при различной концентрации кислорода в окисляющем газе. Определено влияние концентрации кислорода на скорость и состав продуктов окисления. Обнаружено явление кратковременного сильного автоускорения реакции с последующим замедлением процесса и установлением стационарного значения скорости реакции. Показано, что. механизм процесса включает две макроскопические стадии, обусловленные переходом от некатализированного режима к катализированному окислению. Катализ окисления бутана обеспечивается продуктами коррозии стенок реактора, появляющимися в реакционной смеси в момент отделения водной фазы, содержащей уксусную и муравьиную кислоты. На основании проведенных опытов сделан. зывод о том, что высокая каталитическая активность ионов металлов обусловливается образованием комплексных соединений металлов с некоторыми компонентами реакционной смеси. [c.318]

    Хроматографическая методика натпла значительное применение в исследовании каталитических свойств различных контактов при изучении кинетики и механизма процессов. Впервые изучение каталитической реакции при сочетании микрореактора и хроматографической колонки было проведено Эмметом и сотр. [1], которые исследовали катализатор крекинга типа Гудри. Сущность этого метода заключается в том, что микрореактор устанавливается перед хроматографической колонкой и исходное вещество вводится в реактор в виде импульса, который, проходя через слой катализатора, потоком газа-носителя подается на хроматографическую колонку. Регистрация концентрации вещества производится любым детектирующим устройством. При использовании радиоактивных веществ применяют счетчики Гейгера [1, 2]. Принципиальная схема микрокаталитической установки приведена на рис. 51. Особенности химических реакций в хроматографическом режиме рассмотрены в работах Рогинского с сотр. [3]. [c.131]


Смотреть страницы где упоминается термин Реакторы для процессов с различными механизмами: [c.12]    [c.233]    [c.7]    [c.93]    [c.12]   
Смотреть главы в:

Теоретические основы ведения синтезов жидких топлив -> Реакторы для процессов с различными механизмами




ПОИСК





Смотрите так же термины и статьи:

Механизм процесса

Процесс реакторов



© 2024 chem21.info Реклама на сайте