Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные реакции и реакционная кинетика

    Методика изучения кинетики этой реакции состоит в том, что к реакционной смеси пероксида водорода и иодида калия добавляют определенное количество раствора тиосульфата натрия известной концентрации и раствор крахмала. Иод, образующийся в результате протекания основной реакции, взаимодействует с тиосульфатом натрия [c.76]


    Наиболее важным методом изучения механизма полимеризации, как и для всех сложных реакций, является исследование кинетики этого процесса в различных условиях. Основная ценность кинетического метода заключается в том, что он позволяет количественно связать отдельные элементарные реакции с наблюдаемой суммарной реакцией. Эта связь осуществляется путем сопоставления эмпирически найденных кинетических закономерностей с теоретическими уравнениями, выведенными на основе той или иной совокупности предполагаемых элементарных реакций. Кроме того, кинетические исследования позволяют определить кинетические константы отдельных элементарных реакций, что открывает возможность в количественной форме исследовать зависимость между строением молекул и их реакционной способностью по отношению к тем или иным реакциям. Поэтому определение абсолютных значений констант скоростей элементарных реакций является одной из основных задач химической кинетики. [c.10]

    В монографии изложены на современном уровне основные положения химической кинетики применительно к гетерогенному катализу. Кратко рассмотрены роль химической кинетики и исторические этапы ее развития в катализе, проанализированы кинетические стороны некоторых теорий и изложены фундаментальные понятия кинетики. Подробно обсуждены теория абсолютных скоростей реакций, стадийность каталитических процессов и приложение к ним теории сложных стационарных реакций. Рассмотрены кинетические аспекты селективности и представления о процессах в реальных поверхностных слоях. Уделено внимание влиянию реакционной системы на свойства катализаторов и проблемам нестационарной кинетики, макрокинетическим факторам, особенно закономерностям реакций Б разных областях и критериям влияния переноса массы и тепла. [c.2]

    Рассмотрение закономерностей кинетики химических реакций в открытых и закрытых системах показывает, что форму связи Р (а) для данной реакции обусловливает в основном тип реакционного аппарата, который в ряде случаев оказывает решающее влияние на относительный расход сырья и, следовательно, на себестоимость конечного продукта. Производительность реакционной аппаратуры, как уже сказано, играет второстепенную роль при определении основного показателя экономической эффективности химического производства. Это не следует рассматривать как отказ от интенсификации работы реакционной аппаратуры, однако основная задача технологии состоит в обоснованном выборе типа реактора, способного обеспечить наиболее выгодную для каждого случая форму связи р,, г(а). [c.51]


    Существование этих четырех типов элементарных процессов было установлено в результате детальных исследований кинетики и механизма полимеризационных процессов, проводящихся в последние 30—40 лет, и составляет одну из основ учения о полимерах. Закономерности протекания процессов полимеризации и свойства образующихся при этом полимерных веществ зависят от того, какие из этих четырех типов элементарных реакций и с какой относительной интенсивностью происходят в реакционной системе. Интенсификация или торможение любой из основных реакций позволяет воздействовать на скорость процесса полимеризации, на молекулярно-весовое распределение и на свойства синтезируемых полимерных материалов. [c.432]

    Автор не стремился к чрезмерно глубокому анализу проблем гидродинамики и реакционной кинетики, хотя и те и другие рассматриваются в книге в той мере, в какой это необходимо применительно к интересующему вопросу. Основное же внимание уделено центральной теме — влиянию химических реакций на скорость абсорбции газов жидкостями и на размеры промышленных и лабораторных аппаратов для проведения абсорбционных процессов. [c.9]

    Основным понятием хилшческом кинетики является скорость химической реакции V— про зводиая ог концентрации С по времени, с/С/й /. Она может быть определена по кинегической кривой — зависимости концентрации от времени. Основным уравнением химической кинетики является кинетическое уравнение, отражающее зависилюсть V от концентраций компонентов реакционной смеси С,-. Параметрами кинетического уравнения являются константы скорости химической реакции Часто кинетическое уравнение представляет собой степенную функцию концентраций. Показатель степени при концентрации какого-либо компонента есть порядок реакции по этому компоненту. Зависимость А от температуры описывается уравнением А = (—где А,, — предэкспоненциальный множитель — энергия активации, [c.47]

    Однако не всегда термодинамически возможные реакции осуществляются в действительности, так как реакционная система при переходе из начального в конечное состояние, как правило, преодолевает энергетический барьер. Величина энергетического барьера определяет скорость реакции. Определение условий, при которых термодинамически возможные реакции будут протекать с заданной скоростью, - одна из основных задач химической кинетики. [c.74]

    Одной из основных задач теоретической химии и, в частности, физической органической химии является установление механизма реакций и оценка реакционной способности в ряду сходно построенных соединений. Среди различных типов химических реакций особое место занимают электрохимические процессы. Они, как известно, протекают в пределах тонкого слоя на границе раздела электрод—раствор и в общем случае включают в себя ряд стадий стадию доставки электрохимически активной формы в зону реакции (диффузия, предшествующие химические реакции), взаимодействие с поверхностью электрода (адсорбция, ориентация реакционного центра по отношению к поверхности электрода и т. п.), стадию переноса заряда, последующие химические и электрохимические превращения первичных продуктов электродной реакции и т. д. Строгий анализ столь сложного процесса встречает большие затруднения и пока вряд ли возможен. Однако при благоприятных условиях удается существенно упростить процесс и получить информацию об отдельных его стадиях. Значительный прогресс достигнут в понимании роли предшествующих реакций протонизации, в представлениях о механизме и кинетике каталитических реакций, адсорбции, о влиянии строения двойного электрического слоя на кинетику электродных процессов. Однако имеется сравнительно мало данных о процессах с последующими химическими стадиями. Между тем влияние этих реакций на кинетику процесса в целом и природу образующихся стабильных продуктов трудно переоценить. Более того, невозможно глубокое понимание механизма электродного процесса без учета химизма и кинетики последующих реакций. [c.138]

    Я. X. Вант-Гофф опубликовал работу Очерки химической динамики , в которых сформулировал основные постулаты химической кинетики. Впервые предложил оценивать реакционную способность вешеств с помощью константы скорости реакций, что переводило основной тезис структурной химии —о зависимости реакционной способности от строения — на количественные рельсы в рамках химической кинетики. [c.654]

    Кинетика реакций, протекающих при гидрировании сырья крекинга, полностью не изучена. Проведенные в лабораториях фирмы Тексако исследования показали, что снижение содержания основного азота описывается уравнением первого порядка. Первый порядок имеет реакция восстановления бициклических ароматических углеводородов — если учитывать протекание обратной реакции. Изучение кинетики обессеривания осложняется присутствием в сырье сернистых соединений различного типа, реакционная способность которых неодинакова. Меркаптаны, сульфиды и дисульфиды легко удаляются при высоких объемных скоростях, но остающаяся тиофеновая сера удаляется значительно труднее, и гидрирование содержащих ее соединений следует проводить при более низких объемных скоростях. [c.215]


    Принципиальное и очень важное отличие ценного процесса полимеризации от цепных процессов, приводящих к образованию низкомолекулярных продуктов, заключается в том, что кинетическая цепь, т. е. многократное повторение реакций роста, создает материальную цепь, состоящую из множества молекулярных звеньев, связанных между собой. Соотношение скоростей роста и обрыва цепи определяет длину полимерной цепи, а стереохимия акта роста цепи определяет структуру макромолекулы, т. е. порядок присоединения звеньев (если они несимметричны) и пространственное расположение боковых заместителей. Наряду с вышеупомянутыми основными реакциями цепного процесса существуют еще и такие, как реакции передачи (переноса) цепи на мономер, растворитель или другие вещества реакционной смеси, которые не вызывают кинетического обрыва, но приводят к ограничению длины цепи (см. стр. 11). Таким образом, важнейшие характеристики полимера — его молекулярный вес и структура — определяются отдельными стадиями цепного процесса и относительными скоростями их протекания, т. е. механизмом и кинетикой полимеризации. [c.8]

    В последние годы опубликовано несколько монографий по химической кинетике. В Советском Союзе изданы монографии Н. Н. Семенова О некоторых проблемах химической кинетики и реакционной способности (1958) и В. Н. Кондратьева Кинетика газовых химических реакций (1958). В русском переводе вышла книга С. Бенсона Основы химической кинетики (1964). Эти обширные монографии дают достаточно полное представление о ряде важнейших направлений научных исследований в области химической кинетики. Однако, поскольку они содержат большое количество специального и зачастую дискуссионного материала, изучение этих монографий требует от читателя знакомства с основами химической кинетики. В то же время учебная литература по химической кинетике все еще немногочисленна. Особенно ощущался недостаток в учебнике по современным основам химической кинетики. По-видимому вследствие этого первое издание настоящего Курса химической кинетики , вышедшее в свет в 1962 г., разошлось очень быстро и возникла необходимость в выпуске второго издания — исправленного и дополненного. В предлагаемом курсе изложены теоретические основы кинетики гомогенных химических реакций. Кинетика гетерогенных реакций в курсе не рассматривается в связи с тем, что она в основном имеет значение для области гетерогенного катализа, которая представляет собой самостоятельный раздел науки. [c.4]

    Изучение кинетики химической деструкции представляет чрезвычайно сложную задачу как в отношении получения корректных экспериментальных данных, так и нахождения кинетических параметров отдельных элементарных актов. В настоящее время прогресс, достигнутый в области физической органической химии (введение функций кислотности и щелочности, установление связи между скоростью кислотно-основных реакций и этими функциями, введение в химию корреляционных уравнений), позволяет не только определять кинетические параметры элементарных актов, но и предсказывать их изменение в зависимости от термодинамических параметров реакционной среды и строения реагентов. [c.71]

    Основным понятием химической кинетики является скорость химической реакции (химического превращения). За скорость химического превращения принимают величину, характеризующую изменение количества вещества в единицу времени. Если реакционный объем в процессе химического превращения вещества не изменяется, скорость химической реакции будет численно равна изменению концентрации реагирующего вещества в единицу времени. Способ выражения скорости химического превращения вещества зависит от типа химической реакции, а также от того, в каких системах протекает химический процесс (гомогенных или гетерогенных). [c.13]

    К бензольному кольцу [45, 46[. Однако в основном реакции радикалов в конденсированной фазе исследовались методом ЭПР. Эти работы проводились главным образом в лабораториях, руководимых В. В. Воеводским, Н. Я. Бубеном (ИХФ), С. Я. Пшежецким (ФХИ им. Карпова), Н. А. Бах (ИЭЛ), Л. С. Полаком (ИНХС) и посвящены преимущественно исследованию радикалов в твердых органических веществах. Публикации по исследованиям такого рода начались с 1958 г. [47, 48[. Изучались механизм образования радикалов, кинетика их накопления, реакционная способность в твердой фазе. Выяснению этих вопросов существенно помогло развитие техники облучения и измерений при низких температурах, облегчающих стабилизацию радикалов, и метод снятия спектров ЭПР непосредственно во время облучения потоком электронов, впервые осуществленной в ИХФ под руководством В. В. Воеводского и Н. Я. Бубена [49]. [c.350]

    Основным уравнением химической кинетики является уравнение, связывающее скорость химической реакции г с температурой и концентрацией компонентов реакционной смеси [31, 207] [c.96]

    Один из главных недостатков теории столкновений — необходимость расчета зависящего от энергии сечения реакции. Как было показано выше, для такого расчета требуется знание потенциальной поверхности реакции и проведение сложных вычислений методами квантовой теории рассеяния. Ввиду этих трудностей и исходя из основной задачи химической кинетики — создания теории, связывающей строение реагентов с их реакционной способностью, — значительные усилия были направлены на поиск простых феноменологических моделей, отвечающих этой цели. Наибольшее распространение из такого рода теорий получил метод переходного состояния (МПС), называемый также методом активированного комплекса, развитый главным образом Г. Эйрингом [21, 34]. Для применения этого метода в отличие от теории столкновений требуется только весьма ограниченная информация о потенциальной поверхности. [c.163]

    При проведении сложных реакций, кинетика которых описывается не одним уравнением скорости, к реактору предъявляются взаимоисключающие требования — минимальный размер и максимальный выход целевого продукта. На практике ввиду сложности выделения основного продукта из реакционной смеси и высокой стоимости исходных веществ (по сравнению с расходами на амортизацию оборудования) определяющим фактором является обычно избирательность процесса. [c.245]

    Теория абсолютных скоростей реакций описывает реакционные свойства частиц на основании особенностей строения исходных веществ и активированного комплекса. Поэтому при кинетическом рассмотрении любые бимолекулярные реакции следует считать процессами, протекающими с изменением числа частиц в исходном состоянии — две, а в переходном — одна (активированный комплекс). Реакции рекомбинации и с термодинамической точки зрения протекают с изменением числа частиц Аг = 1. Так как кинетическое описание основано в значительной степени на термодинами-ч еских представлениях, то можно полагать, что определение факторов, вносящих основной вклад в термодинамические характеристики (А5 и АЯ) реакций рекомбинации, позволит понять особенности кинетики (т. е, А5+ и АЯ+) этих реакций. [c.89]

    Результаты исследований по кинетике химических реакций в условиях наличия поля центробежных сил и струйного течения газа в реакционной зоне и разработанная методика расчета термокаталитических трубных аппаратов дают широкие возможности для моделирования и конструирования устройств санитарной очистки газов, выбрасываемых в атмосферу (основные виды фотохимических реакторов представлены выше). [c.315]

    Механизм мицеллярного катализа сложен, зависит от специфики реагентов и ПАВ и выяснен далеко не в полной мере. Влияние мицелл на химические реакции определяется двумя основными факторами — изменением реакционной способности веществ при переходе их из воды в мицеллярную фазу и эффектом концентрирования реагентов в мицеллах, причем второй фактор во многих случаях является единственным источником мицеллярного катализа. Изменение реакционной способности вещества в мицеллах обусловлено совокупностью электростатических и гидрофобных взаимодействий между молекулами реагента и мицеллами, что приводит к изменению энергий основного и переходного состояний реагентов На роль электростатических взаимодействий указывает, в частности, тот факт, что обычно реакции нуклеофильных анионов с нейтральными молекулами ускоряются катионными мицеллами, замедляются анионными, а мицеллы НПАВ практически не оказывают на них влияния. Во многих случаях мицеллы влияют не только на кинетику, но и на равновесие реакций, что не свойственно истинным катализаторам. [c.86]

    Химическая связь — одна из ведущих проблем химии. Химическая связь в значительной степени определяет основные свойства молекул и твердых тел (энергия, реакционная способность, спектры, прочность, геометрические размеры, динамические, диффузионные характеристики и др.). Выяснение физического механизма химической связи, объяснение ее особенностей является важной задачей физики и химии. Следует отметить, что химическая связь обладает весьма специфическими свойствами. К ним относится прежде всего насыщаемость. После того как два атома водорода соединятся в молекулу, третий атом будет отталкиваться, а не притягиваться к этой молекуле. Алхимики описывали это свойство как наличие у атомов крючков, которые зацепляются друг за друга. Отталкивание насыщенных молекул определяет ряд важных свойств. Прежде всего размер всех тел определяется этим отталкиванием. Как указывалось выше при изложении кинетики химических реакций, отталкивание насыщенных связей определяет величину энергии активации. В природе нет других сил, обладающих подобным свойством насыщения. [c.320]

    Если процесс превращения основного реагирующего вещества протекает с образованием одного продукта, то для выявления локальной кинетики необходимо располагать экспериментальной кривой распределения температур по длине реакционной зоны, а также начальной и конечной концентрациями реагирующего вещества.. Зная распределение температуры и тепловой эффект реакции, легко построить кривую изменения концентрации основного реагирующего вещества по длине реакционной зоны (см. рис. У1-2), а также уточнить материальный баланс по тепловому балансу, так как при протекании адиабатического процесса должно соблюдаться равенство  [c.185]

    Механизм процесса окисления насыщенных углеводородов. Характерные особенности кинетики окисления углеводородных газов (автоускорение в начальной стадии реакции, резкое влияние стенок реакционного сосуда и влияние мельчайших количеств посторонних примесей) показывают, что окисление протекает по цепному механизму через свободные радикалы с вырожденными разветвлениями [131]. При вырожденном разветвлении в результате элементарного акта реакции свободного радикала с молекулой образуется, кроме нового радикала, ведущего основную цепь, промежуточное молекулярное соединение, достаточно нестойкое в условиях процесса, чтобы через некоторое время распасться на свободные радикалы, которые могут возобновить основную цепь. Такими молекулярными промежуточными соединениями, ведущими цени вырожденного разветвления, являются при низких температурах гидроперекиси углеводородов КООН, а при высоких — альдегиды. Из теории цепных процессов с вырожденными разветвлениями следует, что увеличение диаметра сосуда, повышение давления и добавка инертных газов увеличивают скорость цепной реакции, которая может приобрести взрывной характер. [c.306]

    Температура промышленных процессов риформинга обычно находится в интервале 450—530°С. С повышением температуры ускоряются все основные реакции. При этом рассмотрение кинетики процесса затрудняется параллельно протекающими разнородными реакциями (ароматизации, гидрокрекинга и др.), во многом зависящими от температуры в реакционной зоне аппарата. Как было показано выше, процесс риформирования в целом эндотермичен и требует межступенча-того подогрева газосырьевого потока. Температурный режим реакторов промышленных установок близок к адиабатическому. [c.13]

    Во второй части четвертой главы рассмотрены термодинамика и кинетика элементарных реакций присоединения и замещения радикалов с простейщими непредельными и предельными углеводородами, а также реакций рекомбинации и диспропорционирования радикалов и молекул алканов и алкенов и реакций изомеризации радикалов. Эти реакции играют важную роль не только в термическом радикально-цеп-ном крекинге и пиролизе, но и во многих других цепных реакциях органических веществ, протекающих в газовой фазе. Рассмотренные реакции относятся к основным реакциям химии радикалов вообще, а решаемые вопросы — к проблеме реакционной способности частиц в радикальных реакциях. [c.11]

    Основные научные работы посвящены изучению кинетики и механизма свободнорадикальных химических реакций, реакционной способности органических соединений, а также фотохимии. Исследовал бензидиновую перегруппировку и установил (1950), что скорость процесса пропорциональна концентрации гидразобензола и квадрату концентрации водородных ионов пришел к выводу, что первые две стадии процесса заключаются в присоединении протонов к азоту. Обнаружил влияние удаленных заместителей на кинетику реакций и первым указал на многочисленные случаи отклонения от уравнения Гаммета. Изучал химию возбужденных молекул, кинетику и механизм окисления металлоорганических соединений. Предложил (1961) механизм для процесса фотовосстановлення бен- [c.539]

    В настоящей книге мы изложим историю, пожалуй, основного направления в кинетике органических реакций—историю учения о связи строения органических молекул (в рамках классических электронных и стереохимических представлений) с их реакционной способностью в период с бО-х годов XIX в. до начала 40-х годов XX в. Выбор нижнего хронологического предела обусловлен появлением первых работ по установлению связи между строением и реакционной способностью молекул, а опубликованная в 1941 г. монография Глесстона, Лейдлера и Эйрин-га Теория абсолютных скоростей реакций [21] явилась достойным завершением большого и интересного периода создания предпосылок для современного бурного развития кинетики органических реакций. [c.7]

    Несомненно, что такой подход к решению одной из кардинальных проблем химии свободных радикалов мог возникнуть только на основании предпринятых в 40 — начале 50-х годов исследований механизмов гомолитических реакций. Основными объектами изучения кинетики жидкофазнглх гомолитических превращений в 40—60-х годах были реакции полимеризации и сополимеризации и реакции окисления. Среди газофазных превращений главное внимание химиков было привлечено к исследованию окисления водорода и углеводородов, а также крекинга углеводородов. Они стремились к уточнению механизмов этих реакций, а также к изучению связи между строением и реакционной способностью радикалов (особенно в 60-е годы). Кроме того, изучалось влияние внешних факторов (особенно роль среды) на протекание гомолитических реакций. При этом большое значение имело исследование стабильных радикалов [278]. [c.118]

    Основным методом повышения однородности эфиров целлюлозы, получаемых при этерификации в гетерогенной среде, является повышение скорости диффузии реагентов внутрь волокна без одновременного изменения скорости химической реакции. Обычно для этого повышают концентрацию этерифицирующего агента в реакционной смеси или подвергают целлюлозное волокно предварительному набуханию (без изменения состава этерифицирующей смеси). В результате набухания взаимодействие между макромолекулами ослабляется, что и приводит к повышению скорости диффузии реагентов в отдельные участки целлюлозного волокна. Предварительное набухание цатлюлозы является одним из основных факторов, определяющих кинетику процесса этерификации и свойства получаемых продуктов. В ряде случаев без набухания целлюлозы процесс этерификации не доходит до конца, так как этерифицирующий реагент не может продиффун- [c.338]

    Коэффициент пропорциональности й за]висит, по Брюэру и Вестхаверу, от размеров и формы реакционной трубки, 1при данной же трубке не зависит от давления и градиента потенциала в разряде. Эта данные и привели к представлению о ионе N2+ как активной частице при синтезе аммиака, так как, с одной стороны, концентрация ионов пропорциональна силе тока и, следовательно, по основному закону химической кинетики должно оправдываться эмпирически найденное соотношение. С другой стороны, предположение о возбужденных молекулах как активных частицах отвергается независимостью скорости реакции от давления, так как их концентрация должна уменьшаться с ростом давления. [c.187]

    Основную роль в кинетике твердофазных реакций играют стадии собственно химического взаимодействия, зароды-шеобразования и диффузионного переноса через слой образовавшегося продукта. Химическое взаимодействие пачнпа- ется на наиболее активных участках поверхности (выходы дислокаций, точечные дефекты и т. д.), здесь образуются ядра (зародыши) продукта реакции, рост и слияние которых приводят к появлению сплошной реакционной зоны. После образования продукта устанавливается стационарный диффузионный процесс переноса одного из компонентов к другому через слой продукта. Диффузионный массопере-нос может происходить по нескольким механизмам по объ- [c.208]

    Кинетика химических реакций. В реакторах емкостного типа обеспечивается интенсивное перемешивание, поэтому при сравните,чьио небольших объемах реакционной массы эти реакторы адекватно описываются моделями идеального вытеснения во времени. Если реакция идет без изменения объема реакционной массы или его изменением можно пренебречь ввиду малости, то продолжительность основной технологической онерации в реакторе периодического действия можно определить из законов формальной химической кинетики. [c.94]

    Эта глава посвящена простым реакциям, т. е. реакциям, протекание которых можно достаточно хорошо описать всего одним кинетическим уравнением в сочетании со стехиометрическим соотношением и условиями равновесия. Для таких реакций избирательность задана и постоянна следовательно, основным фактором, определяющим расчет реактора, является его размер, необходимый для. достижения заданной производительности. Кроме того, в данной главе изложены вопросы сравнения размеров одиночных реакторов с размерами реакторов в сложных системах, содержащих ряд реакционных аппаратов в различных комбинациях (сначала для необратимых реакций п-го порядка, а затем для реакций с более сложной кинетикой). В конце главы расскотрены уникальные по свойствам автокаталитические реакции. Расчет сложных реакций, для которых решающим фактором является избирательность процесса, приведен в следующей главе. [c.131]

    Общие представления о скорости химических реакций. Одним из основных понятий в химической кинетике является скорость реакции. Скорое т ь ю х и мической реакции и назы-вают изменение количества еагирующего вещества за единицу времени в единице реакционного пространства. В гомогенной системе реакционным пространством служит объем сосуда, в котором протекает взаимодействие. [c.108]

    Эта реакция эндотермична и начинает идти с заметной скоростью выше lOOif , Кинетика процесса очень сложна. В реакционной системе протекает ряд химических реакций, помимо основной  [c.142]

    При разработке способов получения и изучение свойств синтезированных соединений установлены закономерности реакций соединений адамантана, а именно вторичных амидов и диамидов с хлорирующими реагентами имидоилхлоридов и диимидоилхлоридов со спиртами, фенолами, аммиаком, первичными и вторичными аминами, гидразинами, сложными ароматическими соединениями термораспад имидоилхлоридов влияние эффектов адамантильной группы на реакционную способность имидоилхлоридов при их взаимодействии с нуклеофильными и электро-фильными реагентами кинетика и механизм имидоилирования гидрокси-соединений имидоилхлоридами взаимодействие имидатов с электроноакцепторными заместителями в иминофуппе с аминами и гидразином экспериментально количественно или качественно определена основность имидоилхлоридов и имидатов, установлена связь этого свойства со строением соединений. [c.85]

    Химики используют в своих рассуждениях мысленные образы, структурные формулы (СФ), структуры Кекуле, диаграммы ORTEP. Однако в меньшей мере используется основная математическая структура этих конструкций. Нашей целью будет разработка алгебраических и топологических характеристик такой структуры первоначально для квантовой химии (молекулы, стадии молекулярных реакций), затем в известной степени для химической кинетики и динамики (нахождение возможных путей, механизмов, определение их стационарных состояний, устойчивости, колебаний). Для квантовой химии, т. е. микрохимии , будут разработаны правила с целью получения обычным путем основных электронных характеристик молекул [система уровней молекулярных орбиталей (МО), реакционная способность, устойчивость к искажениям] и в некоторых математических классах непосредственно из структурных формул или диаграмм ORTEP. На макрохимическом уровне, т. е. при нахождении всех математически возможных путей синтеза, механизмов, при разработке правил стадия/соединение, связывающих число реагентов, продуктов, интермедиатов, катализаторов, автокатализаторов с числом элементарных реакционных стадий в химической смеси и затем с динамическими неустойчивостями, будут использоваться представления иного типа — реакционные схемы, являющиеся графами с двумя типами линий и двумя типами вершин [I]. [c.73]

    Большое ко.ничество данных относительно кинетики реакций, изотопных эффектов и влияния структуры на реакционную способность позволили тщательно разобраться в стадиях нитрования ароматических соединений. Как следует из основного механизма электрофильного замещения, существуют три различные стадии  [c.356]


Смотреть страницы где упоминается термин Основные реакции и реакционная кинетика: [c.114]    [c.97]    [c.17]    [c.9]    [c.108]    [c.314]   
Смотреть главы в:

Применение водорода для автомобильных двигателей -> Основные реакции и реакционная кинетика




ПОИСК





Смотрите так же термины и статьи:

Кинетика основных реакций



© 2025 chem21.info Реклама на сайте