Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутен окись

    Бутан-бутиленовая углеводородная фракция Бутадиен, бутен - Окись железа в присутствии воды, 1 бар, 450— 700° С [323]. См. также [315] [c.17]

    Тиофен может получаться из бутапа или бутенов взаимодействием их с двуокисью серы над катализатором окись молибдена — окись алюминия или окись хрома — окись алюминия. Из высокомолекулярных парафиновых углеводородов наряду с тиофеном получаются алкилтиофены. В табл. 67 даны некоторые примеры этого. Тиофен и алкилтиофены могут получаться нри помощи названных выше катализаторов дегидрирования также из парафиновых углеводородов и сероводорода. [c.146]


    Тиофен, который в последние годы производится в промышленных масштабах, также легко может алкилироваться каталитическим путем. Алкилирование тиофена бутенами или пентенами, а так>ке исключительно пригодным для этого циклогексепом может осуществляться пропусканием тиофена и олефинов или циклоолефинов над катализатором кремневая кислота — окись алюминия при 200° или над твердой фосфорной кислотой, как было выше описано для получения кумола, или также с серной кислотой. [c.231]

    Дегидроциклизацией изооктана при 550° С над молибден-хромовым катализатором получают ксилолы [289], но над окисью хрома получаются олефины [264]. Необходимо отметить протекающую здесь промежуточную изомеризацию [291]. При дегидроциклизации диизобутил- и диизоамил- [279, 284, 285] -декана, пентакозана [276] и керосина [286] образуются ароматические углеводороды. Бутилбензол дает нафталин [279] смесь 1- и 2-ок-тена превращается в о-ксилол ароматические углеводороды получаются при дегидроциклизации компактных олефиновых структур, таких как 2-этил-1-бутен и З-метил-2-пентен. Во всех вышеприведенных превращениях углеводороды, кипящие ниже исходного сырья, не образуются до тех нор, пока преобладают мягкие условия процесса [279]. [c.103]

    Состав продуктов и кинетика реакций. Побочными продуктами окислительного дегидрирования бутенов являются окись и двуокись углерода, фу ран, формальдегид, ацетальдегид, акролеин. [c.686]

    Как показывают эти данные, при введении палладия в окись алюминия усиливается образование транс-бутена-2 (при 300 °С константы Й2/Й1 и йз/й) превышают 1), т. е. отношение цис-бу-теи-2 транс-бутен-2 становится меньше 1. Ускоряется также скелетная изомеризация если в присутствии чистой окиси алюминия константа 4/ 1 при 300 °С незначительно отличалась от нуля, а прк 450 °С составляла 0,23 (табл. 46), то в присутствии палладирован-ного катализатора эта константа уже при 300°С равна 0,48. На этом катализаторе изобутен образуется не только из транс-буте-на-2, но также из бутена-1 и из цис-бутена-2, хотя и с меньшей скоростью. Относительные константы скоростей этих реакций при 300 °С соответственно равны б/Й1=0,104 и =0,135. При 300 °С основной реакцией является изомеризация цис-бутена-2 в Гранс-бутен-2 ( 3/ 1 = 1,62), а при 450 °С превращение бутена-1 в транс-бутен-2 ( / 1 = 1,35). Следовательно, в присутствии палладированной окиси алюминия изомеризация всех четырех бутенов протекает по схеме, приведенной на стр. 151, причем введение палладия усиливает образование транс-бутена-2 и изобутена. [c.169]


    Для получения изобутена можно использовать также процесс скелетной изомеризации н-бутенов в присутствии кислотных катализаторов (алюмосиликатов, окиси алюминия, модифицированной НС1 или HF, твердой фосфорной кислоты, металлов VHI группы на окиси алюминия) [27—33]. В присутствии фосфорной кислоты на кизельгуре из смеси н-бутенов при 3-25°С получается до 40% изобутена. Стабильным и селективным катализатором является также фторированная окись алюминия изомеризацию н-бутенов на этом катализаторе проводят при 400 °.С. [c.192]

    В табл. 67 приведены результаты скелетной изомеризации н-бутенов в изобутен в присутствии фторированных катализаторов. Видно, что селективным катализатором является окись алюминия, содержащая 0,36% F выход изобутена 23,6%, а селективность процесса 30%.  [c.192]

    Наиболее важный процесс дегидрирования — получение стирола из этилбензола. Но и алканы можно дегидрировать до алкенов, а алкены — до алкадиенов-1,3. Все эти процессы более пригодны для промышленного использования, но иногда могут представлять ценность и для лабораторных синтезов. Обычно для дегидрирования применяют алюмохромовый катализатор, состояш,ий из окислов хрома и алюминия его получают соосаждением гидроокисей. По более простому способу 100 ч. активированной окиси алюминий (6—10 меш) прибавляют к 50 ч. 10%-ного хромового ангидрида в воде, катализатор отфильтровывают и высушивают при 220—230 °С. Специфический катализатор для дегидрирования этилбензола содержит 72,4% MgO, 18,4% FeA. 4,6% uO и 4,6% K.O. Окись калия настолько уменьшает образование углеродистых отложений, что срок работы катализатора достигает 1 года. Дегидрирование этилбензола лучше всего проводить при конверсии 37% и при 600 С, причем над катализатором пропускают углеводород и водяной пар при 0,1 атм. Те же катализатор и условия работы, за исключением того, что разбавителем является не водяной пар, а азот, пригодны для дегидрирования бутенов в бутадиен-1,3. Недавно была достигнута высокая конверсия этилбензола в стирол в результате окисления сернистым ангидридом в присутствии фосфата металла [32], [c.163]

    При термическом разложении окиси этилена в статической системе в присутствии 4—10-кратного избытка пропилена - главными продуктами реакции являлись окись углерода, метан, этан, пропан, бутен-1, цис- и транс-бутены-2, ацетальдегид и диаллил. Скорость превращения окиси этилена выражается уравнением [c.63]

    Бутен-1, Оз Окись бутилена, пропионовый альдегид, пропионовая кислота, метилэтилкетон MgO или СаО в бензоле, 120 С [238] [c.141]

    Бутен-1, Оа Окись бутилена, пропионовый альдегид, метилэтилкетон, пропионовая кислота СаО, MgO, нафтенат или ацетилацетонат Со в бензоле, 120° С [238] [c.156]

    В бутадиеновом процессе Филлипса исходный материал — бутан — па первой ступени дегидрируется в бутен, который на второй ступени превращается в бутадиен. Вторая ступень работает практически так же, как первая, т. е. с катализатором 01 ись хрома — окись алюминия, который находится в обогреваемых снаружи трубках. Дегидрирование на второй ступени идет при температуре около 670°, т. е. примерно на 140° выше, чем на первой ступепи. Водяной пар подается в значительно меньшем количестве, чем в процессе Стандард Ойл. Здесь он не является теплоносителем, а служит лишь средством понижения парциального давления и уменьшения отложения кокса па катализатор. [c.86]

    Пиро.т1из 1-хлорбутана при 550° приводит к получению одного лишь 1-бутена. 2-хлорбутан, напротив, при 500° превращается на одну треть в 1-бутен и на две трети в 2-бутен. Термическое разложение обоих хлоридов в присутствии хлористого кальция (450°) позволяет получать в основном 2-бутен [135]. Хлорированный твердый парафин, как сообщалось [ИЗ], может быть количественно дехлорирован прп нагреванни до 300°. Окись алюминия нри 350° является эффективным катализатором для реакции отщепления галоидоводорода. Так, из инобутилхлорида над окисью алюминия был получен изобутилен с выходом 95% [119]. Этот катализатор оказался наиболее активным при дсгидрохлорировании хлорнроизводных нентана, гексана и гептана [39]. [c.419]

    Представляет интерес исследовать изомеризацию олефинов в атмосфере водорода, в связи с тем что эта реакция может быть промежуточной как при гидрировании олефинов, так и при изомеризации парафинов. Показано [39], что изомеризация бутена-1 в присутствии Нг и без него приводит к разным составам получаемых бутенов-2. Палладйрованная окись алюминия более активна при изомеризации бутена-1 в присутствии водорода. Степень конверсии бутена-1 в бутены-2 в этом случае при 200 °С составляет 56,8%, а в отсутствие Нг она меньше 1%. Кроме того, установлено, что в присутствии Нг реакции изомеризации протекают уже при комнатной температуре, а без Нг —только после 150°С. Но при высоких температурах этот катализатор активен и без водорода. [c.157]

    Окись алюминия, дегидратированная при 600—650 °С, также проявляет значительную активность в изомеризации н-бутенов в изобутен и в изомеризации пентенов-2. Окись алюминия эффективно катализирует перемещение алкильных радикалов в изооле-финах вдоль цепи, как это видно из данных по изомеризации 2-метилбутена-1, также приведенных в таблице. [c.166]


    По данным [57], лимитирующей стадией является скелетная изомеризация бутенов. Согласно приведенным выше данным, паллади-рованная окись алюминия является одним из наиболее активных катализаторов скелетной изомеризации олефинов. В связи с этим авторы определили скорости скелетной изомеризации н-бутана и бутена-1. Для изомеризации н-бутана при 570 °С скорость оказалась равной 0,2 моль/ч на 1 см катализатора. Поскольку скорость изомеризации бутена-1 при 570 °С экспериментально не может быть определена (из-за термической изомеризации и сильного крекинга бутена-1), были рассчитаны скорости скелетной изомеризации бутена-1 при 450 и 500 °С и кажущаяся энергия активации (67 кДж/моль). Принимая, что в интервале 500—570 °С энергия активации остается прежней, была найдена скорость скелетной изомеризации бутена-1 при 570°С, которая составила 0,177 моль/ч на 1 см катализатора. Следовательно, можно считать, что скорости изомеризации н-бутана в изобутан и бутена-1 в изобутен являются величинами одного порядка. [c.169]

    Положенное в США в основу производства синтетическою каучука дегидрирование бутанов и бутенов изучалось Гроссом [43] и Моррелем [44]. В качестве катализаторов этими авторами были использованы хром-молибден и окись ванадия, нанесенная на глинозем. Над теми же катализаторами, приготовление которых было описано Гроссом, может быть осуществлено и дальнейшее дегидрирование олефинов в диолефины [45]. Последнюю реакцию, в отличие от дегидрирования парафиновых углеводородов, осуществляют иод вакуумом в 0,25 атм при 600—6.50 и времени контакта от0,3 до0,03сек. Выход бутадиена за проход колеблется в пределах от И до 30%, а максимальный выход 1,3-бутадиена из бутонов достигает 1 % (при отделении сажи, не превышающем 10%). В С(>СР этот путь синтеза дивинила разрабатывался П. Д. Зелинским, О. К. Богдановой, А. П. Щегловой, М.П. Марушкиными Л. Н. Павловым [46, 47].Производство каучука, а затем резины потребовало, в свою очередь, преодоления ряда новых трудностей. Мы приведем лишь два примера, относящихся к полимеризации смесей дивинила п стирола и к производству сажи. [c.474]

    Для проведения описанного процесса был предложен целый ряд катализаторов. К числу трех наиболее хороших катализаторов можно отнести используе1 1ую в промышленности систему окисей окись кобальта - окись молибдена - окись алюминия (так называемые кобальтмолибденовые катализаторы) /11/ катализатор, содержащий 7% на крупнопористом силикагеле /32/, а также на окиси алюминия /12/. WOз на силикагеле проявляет активность при температурах порядка 400 С, молибдат кобальта - в интервале 150-200°С и Не207 на окиси алюминия - при температурах 30-50°С. Насколько нам известно, в продажу поступает только молибдат кобальта". Поэтому приведенные ниже условия обработки, рабочие параметры процессов получения этилена и бутенов из пропилена, а также каталитические яды относятся именно к этому катализатору. [c.113]

    Первые исследователи, работавшие в области каталитического дегидрирования парафиновых углеводородов, применяли в качестве катализатора гель окиси хрома при температуре 350—500° [15]. В этих условиях газообразные парафиновые углеводороды превращаются (практически без побочных реакций) в олефпны с тем же числом углеродных атомов. Из н-бутана образуются смеси к-бутенов и водорода с н-бутаном, в которых бутенов содержится около 15%. В свою очередь к-бутены состоят из бутена-1 (примерно 25%) и бутена-2 (75%). В технике чистая окись хрома непригодна в качестве катализатора, так как вследствие наступающей кристаллизации она очень быстро теряет свою активность. При добавлении малоактивной окиси алюминия 16], препят( твующей кристаллизации окиси хрома, хотя и уменьшается активность катализатора, однако очень увеличивается срок его службы. [c.57]

    Напишите структурные формулы следующих соединений а) этилбутиловый эфир б) 2-метоксибутан в) 2-эток-сипропан г) диизопропиловый эфир д) монометиловый эфир этиленгликоля е) бутилвиниловый эфир ж) окись пропилена з) 1,2-эпокси-2 Метилпропан и) 3,4-эпокси-1-бутен. [c.71]

    К.д. олефинов в диолефины-в осн. смешанные алюмо-хромовые, железохромовые и кальцийникельфосфатные катализаторы. Для дегидрирования бутенов и изопентенов наиб, применение находит последний. Процесс на этом катализаторе проводят короткими циклами по 0,25-0,5 ч при 600-650 °С и разбавлении сырья водяным паром выход олефинов ок. 45% по массе при селективности катализатора ок. 90%. Получают такой К.д. совместным осаждением фосфатов Са, N1 и Сг. Для дегидрирования бутена исполь-з>ют также железохромцинковый катализатор, работающий циклически по 4-12 ч при 580-630 °С и разбавлении сырья водяным паром (регенерируют такой К.д. паровоздушной смесью) выход бутадиена ок. 22% по массе при селективности катализатора 76-78%. Такой катализатор м.б. получен смешением оксидов Ре и 7п (1,9 1) с р-ром СгОз с послед, восстановлением Сг до Сг орг. восстановителем и прокаливанием при 500-550 °С. [c.340]

    На примере MgO [317] показано, что для приготовления катализатора можно использовать различные соединения - гидроксид, карбонат, ок-салат или же получать MgO мягким окислением порошкообразного магния парами воды. Полученные таким образом образцы обладают высокой активностью и селективностью в образовании цис- и трдис-бутенов-2. [c.120]

    В колбу емкостью ГОО мл помещают 12,8 г (0,05 М) 1-ок-со-2-фенилсульфонил-3,6-дигидро-1,2-тиазина и добавляют 40 мл 2 н. раствора едкого натра. Через 20—30 минут образовавшийся однородный прозрачный раствор подкисляют соляной кислотой до кислой реакции по конго. 1-Фенилсульфо-ниламинобутен-3 выделяется из раствора в виде масла, ко-, торое извлекают эфиром (3X30 мл), эфирный раствор сушат сульфатом натрия. После отгонки эфира 1-фенилсульфонил-амино-бутен-3 перегоняют в вакууме. [c.146]

    Проведенпе реакции в токе СОз над катализатором — окись хрома с разными добавками — приводит к глубокой конверсии бутана с образованием СО, Н2 и СН4. Это показывает, насколько устойчивы в этих условиях алканы и как склонны они к реакциям. распада. В тех же условиях бутен и этилбензол легко дегидрогенн-зируются. Этилбензол дает выход до 55% стирола за пропуск, причем распад на газообразные продукты составляет только 8—10%, катализатор. легко регенерируется и долго работает. Бутен дегидрируется с выходами бутадиена 33—34% на пропущенный или 80—90% па превращенный бутен Бутадиен, полученный дегидрогенизацией бутена или бутана, не загрязнен производными этина (ацетилена), как бутадиен из газов ииролиза (производные этина делают невозможной полимеризацию бутадиена над металлическим натрием). Один из балансовых опытов дегидрирования бутена над хромовым катализатором (сформован в виде цилиндриков плотность 2,89, насыпной вес 0,78 жг/л) при режиме процесса температура 600° С, давление 180 мм рт. ст., время контакта 0,65 сек., скорость подачи 1660 д/час л, следуюпщй. [c.295]

    Однако винильные карбанионы, которые можно сравнить с ок-Симами, имеют достаточную жесткость для сохраиеапя цист ране-структуры в процессах конденсации. Карбонизация fас-бутен-2-магнийбромида приводит к тиглиновой кислоте (к). [c.484]

    Близкое строение молекулы олефина иногда приводит к различным направлениям реакции пропилен окисляется в акролеин, а бутен-1 дегидрируется в бутадиен. Степень конверсии этих оле-фииов и селективность оки сления на одной и той же поверхности различны вследствие образования неодинаковых поверхностных соединений. В гл. II упоминалось, что пропилен образует на поверхности я-аллилыный комплекс, а бутилены, по-видимому, дегидрируются по другому пути — через образование я-комплекса с одновременным отщеплением двух атомов водорода [462]. Различное поведение изомерных бутиленов объясняется стерическимп затруднениями, поэтому катализаторы окислительного дегидрирования должны 0 бладать и изомеризующей способностью. [c.286]

    Бутин-2-ил-изоами-ловый эфир 1-Хлсрбутан Винилацетилен (I), изопентанол Разложение с отще цис-Бутен-2, НО Бутен-1, НС1 Na в изопентаноле (образуется алкоголят Na) 145-150 С, 7 ч. Выход I — 53,2% [607] плением галоидводородов Na l или a lj [608]. См. также [237] Окись или гидрид щелочного или щелочноземельного металла [608] [c.68]

    Этилен Пропилен Бутен -1 Изобутилен Р е а к t Этилен Высший олефин, этан Бутен, пропан Высший олефин, бутан Высший олефин, изобутан 1ИИ с участием м Окись этилена РЬ на y-AljOg проток, 1 бар, 200—500 С [734I° юлекулярного кислорода Ag на корунде с добавкой РЬ (0,016% от веса Ag O) [735] [c.535]


Смотреть страницы где упоминается термин Бутен окись: [c.413]    [c.106]    [c.162]    [c.684]    [c.63]    [c.121]    [c.104]    [c.416]    [c.68]    [c.192]    [c.576]    [c.298]    [c.309]    [c.109]    [c.666]    [c.702]    [c.135]    [c.141]   
Гетероциклические соединения Т.1 (1953) -- [ c.33 ]

Гетероциклические соединения, Том 1 (1953) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Бутен

Бутен L Бутен

Бутенил



© 2025 chem21.info Реклама на сайте