Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина каталитические свойства

    В качестве модельной реакции для изучения каталитических свойств чистых металлов было выбрано окисление водорода. Наиболее полно эта реакция изучена нами на платине, каталитическим свойствам которой посвящено наибольшее число исследований. Имеющиеся в литературе данные, относящиеся как к природе катализирующей поверхности платины, так и к кинетике окисления водорода на этом металле, весьма противоречивы. Так, например, одни исследователи [4, 5] считают, что кислород активирует поверхность платины, а водород отравляет ее, другие [6, 7] придерживаются противоположной точки зрения. Скорость реакции, по данным разных авторов, пропорциональна либо давлению кислорода [81, либо водорода [61. Получены и другие уравнения реакции [4, 7, 9]. В соответствии с этим предлагались различные механизмы реакций. [c.168]


    При уменьшении содержания платины на катализаторе (при остальных равных условиях) происходит ухудшение его каталитических свойств. Из-за более малой доступной поверхности платины возрастает скорость коксообразования. При этом снижается то предельное содержание кокса на катализаторе, с которым он сохраняет работоспособность (рис. 4.5). [c.52]

    Как видно из графика, при уменьшении содержания платины на АПК ниже 0,2 % мае. происходит резкое ухудшение его каталитических свойств. [c.52]

    Другой тип химического взаимодействия между металлом и его носителем наблюдался для платины на оксиде алюминия при высокотемпературном восстановлении водородом. Часть оксида алюминия образует с платиной твердый раствор. В настоящее время еще не ясно, насколько распространен или важен этот эффект. Естественно, можно ожидать, что иримесь в носителе, такая, как железо в оксиде алюминия, может сплавиться с нанесенным металлом. Такое сплавление может существенно влиять на каталитические свойства. [c.14]

    Влияние на каталитические свойства. Значительный интерес представляют данные о влиянии кокса на каталитические свойства платины. Так, было установлено, что при закоксовывании алюмоплатинового катализатора его активность в реакции гидрогенолиза циклопентана снижается значительно больше, чем в реакции гидрирования бензола [95]. Другие-авторы [99,1001, исследуя влияние обработки алюмоплатинового катал изатора четыреххлористыми углеродом в атмосфере водорода на активность в реакциях гидрогенолиза и изомеризации н-пентана, установили, что в выбранных условиях происходит селективное отложение кокса на кристаллитах платины, следствием чего является значительное снижение активности катали- [c.51]

    При синтезе аммиака из азота и водорода в качестве катализатора применяется железо 0,01 % серы в железе заметно снижает каталитическую активность железа, а при 0,1% серы железо полностью теряет каталитические свойства. Некоторые веш,ества отравляют одни катализаторы и не отравляют другие. В обш,ем каждый катализатор имеет свой список ядов. Каталитические яды ограничивают, снижают срок службы катализаторов. В технологии очень важно тш,ательно предохранять катализаторы от отравления, предъявляя специальные требования к аппаратуре и очистке исходных веществ. Иногда действие яда удается использовать для ведения процесса в желательном направлении. Так, например, гидрирование хлористого бензоила в бензольном растворе над платиной приводит через ряд последовательных стадий к образованию толуола  [c.430]


    Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя На, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Н и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра- [c.58]

    В отличие от каталитического крекинга, при каталитическом ри-форминге используют катализаторы гидрирования-дегидрирования (платина, промотированная добавками рения, иридия, германия, олова и т.д.), нанесенные на носитель (оксид алюминия с добавками хлора), которые проявляю кислотно-каталитические свойства, приводящие к реакциям изомеризации. [c.20]

    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    Физические свойства. Рутений в порошке — металл темно-синего цвета, сплавленный же по виду напоминает платину. Он обладает высокой твердостью, но настолько хрупок, что легко дробится в порошок. Мелко раздробленный рутений обладает каталитическими свойствами. Коллоидный рутений получается восстановлением его солей. При растворении сплава рутения с цинком в соляной кислоте получается взрывчатая его модификация, переходящая после взрыва в более устойчивую модификацию. [c.364]

    Так, например, рост каталитической активности платины зависит от увеличения поверхности катализатора платиновая про-волока<порошок< платиновая чернь<коллоидная платина (золь платины). Это свойство относится и к другим твердым катализаторам, активность которых растет с увеличением степени дисперсности, но эта зависимость сохраняется только до определенного предела, а затем, по мере возрастания дисперсности, активность катализатора начинает падать, так как исчезает гетерогенность системы. [c.123]

    Практическое использование платиноидов в основном связано с каталитическими свойствами самих металлов и с применением их сплавов (Аи—Рд Р1—РЬ Р1—1г и др.). Наиболее важное значение из платиноидов имеет платина в металлургии сплавов (прежде всего с Аи, КЬ и 1г), как катализатор и как благородный металл. [c.547]

    Как известно, из металлов хорошими каталитическими свойствами обладает платина. Если ее применить в качестве теплового [c.129]

    В последнее время удалось до некоторой степени выяснить, почему в ряду благородных металлов серебро обладает исключительными каталитическими свойствами при окислении этилена. В соответствии с перекисной теорией система металл — катализатор может образовывать супероксид, а при окислении этилена в окись этилена необходимо образование промежуточной перекиси этилена, что требует разрушения этого супероксида. Если предположить, что такие благородные металлы, как платина, золото и палладий, действуют в качестве катализаторов окисления этилена по одинаковому механизму, то их относительная каталитическая активность должна определяться прочностью связи металл — молекулярный кислород. [c.293]


    Опытами Оствальда было установлено также, что губчатая платина и платиновая чернь являются неподходящими катализаторами, так как при них распадение молекулы аммиака значительно усиливается. Оказалось, однако, что катализатор, покрытый маленьким слоем губчатой платины или приобретший в процессе подобную поверхность, представляет наиболее подходящие каталитические свойства в смысле улучшения выходов окислов азота. [c.128]

    Активацией называют процесс, в результате выполнения которого обрабатываемая поверхность диэлектрика приобретает каталитические свойства, обеспечивающие инициирование реакции химического восстановления металла. Активация может быть осуществлена физическими и химическими способами (рис. 13). Практическое значение имеют последние. Суть их состоит в том, что на поверхность диэлектрика наносят активатор, из которого образуются каталитически активные частицы. В качестве активатора может быть использован раствор одного из благородных металлов (палладия, серебра, золота, платины и др.). Возможно использование растворов меди, железа, никеля, кобальта, но практического применения они не получили. [c.42]

    Еще одним крупным потребителем платины стала автомобильная промышленность, которая, как это ни странно, тоже использует именно каталитические свойства [c.226]

    Каталитическими свойствами обладают металлы и их окислы, кислоты и их соли, органические вещества и т. д. Особенно активным катализатором является платина. Губчатая платина способна воспламенять горючие газовые смеси даже при обычных комнатных температурах. Это свойство использовалось в прошлом веке в каталитическом огниве. [c.75]

    Соморджай и соавт. [236—239] для выяснения механизма каталитических превращений углеводородов на ступенчатых поверхностях платины пытались идентифицировать атомные центры монокристаллов Р1, ответственных за разрыв связей С—С, С—Н и Н—Н. Структура и состав поверхности монокристаллов Р1 были исследованы методами Оже-спектроскопии и дифракции медленных электронов. Полученные результаты сопоставлены с каталитическими свойствами Р1 ь реакциях О—Н-обмена, дегидрирования циклогексана в бензол и гидрогенолиза циклогексана с образованием н-гексана. [c.165]

    В табл. 48 сопоставлены каталитические свойства некоторых нанесенных катализаторов при изомеризации бутена-1. Процесс вели при 450 °С и объемной скорости 200 ч . В исходном газе содержалось 86,3% бутена-1, 8,2% цис-бутена-2 и 5,5% транс-бутена-2. Видно, что во всех случаях сохраняется активность носителя в реакциях структурной изомеризации отношение бутены-2 бутен-1 близко к термодинамически равновесному, равному 2,5. Низка и селективность образования стереоизомеров как правило, отношение цис-1транс- мало отличается от равновесного (0,63). Вместе с тем катализаторы, содержащие железо, платину, родий и особенно палладий, эффективны и в скелетной изомеризации [38]. Относительно родиевых и палладиевых катализаторов следует, однако, отметить, что в отсутствие водорода они -быстро дезактивируются. [c.157]

    Взаимодействие платины и носителя влияет также иа каталитические свойства алюмоплатинового катализатора [1971. Так. промышленный катализатор Pt/Al. Og, прокаленный в воздухе при 500 "С и восстановленный водородом при 400 С, обладает весьма высокой активностью в реактт гидрогенолиза пентана, но полностью, ее теряет, если восстановление провести при 550 "С. Однако, если снова прокалить дезактивированный катализатор при 500 °С в воздухе и восстановить его нри 400 °С, то ои приобретает первоначальную активность. Значительное сходство условий, приводящих к уменьшению или восстановлению хемосорбционной емкости платины по водороду и активности катализатора Pt/AljOs в гидрогенолизе позволяет предположить что это взаимосвязанные явления. Возможно, что снижение активности катализатора в гидрогенолизе также связано с образованием сплава платины и алюминия. [c.87]

    Таким образом, если изменение каталитических свойств платинового катализатора риформинга в реакционном периоде обусловлено главным образом коксоотложением, то в процессе окислительной регенерации оно связано в значительной мере со спеканием платины. Исходя из этого, можно прийти к заключению, что восстановление активности подвергнутого окислительной регенерации катализатора рнформинга требует прежде всего редиспергирования платины с целью восстановления ее дисперсности  [c.88]

    Выбор указанных марок катализаторов определялся, во-первых, наличием в них платины или оксидов металлов, способных ускорять реакции г лубокого окисления органических веществ, и, во-вторых, наличием у каждой разновидности полифункциональных катализаторов специфических полезных при эксплуатации качеств. Так, применение отработанных и ча-( тично дезактивированных дорогостоящих катализаторов АП-56 и АП-64 позволяет продлить их эксплуатационный ресурс. Железохромовый ката-.шзатор СТК-1-7 крупной грануляции (диаметр гранул 7,5 мм, длина гранул 10 - 16 мм) имеет при прочих равных условиях меньшее гидравлическое сопротивление по сравнению с другими катализаторами и наиболее доступен и дешев. Никелевый катализатор НКМ-4А обладает повышен--10Й термостабильностью, что особенно важно при очистке залповых выбросов, когда в связи с резким увеличением концентрации окисляемых примесей растет температура процесса. Одновременно с испытанием каталитических свойств катализаторов рассматривалась задача взаимозаменяемости катализаторов в процессах очистки отходящих газов. [c.15]

    По мнению Флинна и Халберта, приведенные данные указывают на то, ЧТО низкотемпературная реакция является истинно гомогенной реакцией, и поскольку это так, то, по мнению этих авторов, каталитические свойства платины связаны не с макроскопическими свойствами металлического ката.)П1затора, а со свойствами отдельных его атомов. [c.205]

    Цвет осмия в порошке — синеватый, сплавленного — светло-серый, похожий на платину. Он, так же как и рутений, имеет высокую твердость, но легко дробится в порошок. В отличие от рутения он поглощает водород, сам при этом нагревается и даже воспламеняется. В мелкораздробленном состоянии обладает каталитическими свойствами. Каталитические свойства проявляют также и некоторые его соединения, например OSO4. [c.365]

    Применение в технике. Из осмия в сплаве с вольфрамом изготовляют нити электрических ламп Осрам , но теперь он частично вытеснен более дешевыми металлами танталом, вольфрамом и рением. Сплавы его с платиной (до 20% Os) применяются вместо сплавов платины с иридием. Из сплава осмия с иридием делают наконечники перьев для авторучек. В некоторых химических производствах используются каталитические свойства осмия (например, при синтезе аммиака). [c.366]

    Все металлы VHI группы каталитически активны в большей или меньшей мере поглощают водород и активизируют его образуют окрашенные ионы (соединения). Никель, палладий и платина по свойствам приближаются к металлам подгруппы меди. В частности, сходство обнаруживается в проявлении увеличивающегосясродства к сере и уменьшающегося к кислороду, что особенно характерно для меди и серебра. [c.344]

    Работа топливного элемента во многом зависит от используемых электродов. Не всякий материал пригоден для изготовления электродов. Ускорить реакции в топливном элементе можно только с помощью электродов, обладающих высокими каталитическими свойствами. Материалом для таких электродов могут служить никель, металлы группы платины, угли с сильно развитой поверхностью, на которую наносят катализаторы, — мелкодисперсные порошки платины, родия и т. п. Элек- [c.492]

    Моноплатиновый катализатор обладает более высокой активностью, селективностью и стабильностью по сравнению с алюмомолибденовым, что способствует его наиболее широкому распространению в 50-е и 60-е гг. прошлого века Однако довольно высокое содержание платины в катализаторе и её стоимость подтолкнули исследователей на поиск и создание более дешевых катализаторов с хорошими каталитическими свойствами, в которых содержание платины было бы уменьшено в несколько раз. [c.34]

    Химическое восстановление никеля является автокаталити-ческой реакцией, так как металл, образовавшийся в результате химического восстановления из раствора, катализирует дальнейшую реакцию восстановления этого же металла Но для начального периода восстановления метапла необходимо, чтобы покрываемая поверхность имела каталитические свойства, которые создаются в результате выполнения операции называемой активированием Активирование заключается в том что на обрабатываемую поверхность химическим путем наносят чрезвычайно малые количества металлов, являющихся катализаторами реакции химического восстановления никеля Такими катализаторами являются коллоидные частицы или малорастворимые соединения палладия, платины золота серебра Самое широкое распростране[[ие получил палладий обладающий высокой каталитической активностью Образование каталитического слоя в виде металла, находя щегося в коллоидном состоянии, осуществляется в две стадии [c.38]

    Исследовались каталитические свойства многочисленных сильных кислот фтористого водорода, фтористого бора, галоидсульфоновых кислот, этансульфоновой кислоты и др. Однако ббльшая часть экспериментальных данных, используемых для выяснения механизма изомеризации насыщенных углеводородов, была получена с применением хлористого и бромистого алюминия, серной кислоты и алюмосиликатов. Поэтому рассмотрение реакций изомеризации, катализируемых сильными кислотами, будет ограничено реакциями, протекающими на перечисленных четырех катализаторах. По тем же причинам обсуждение изомеризации в присутствии гидрирующих катализаторов на кислотных носителях будет ограничено реакциями, протекающими в присутствии платины на содержащей галоид окиси алюминия, никеля на алюмосиликатах и алюмомолйбденового катализатора. [c.88]

    Первый вывод, который можно сделать из анализа рис. 2.28, состоит в том, что природа электродной поверхности зависит от потенциала, лри котором предварительно выдержали электрод. Так, электрод, поляризуемый вначале при 0,0 В, а затем при потенциале 0,7 В, представляет собой платину, вблизи поверхности которой существует только двойной слой. Напротив, если бы электрод поляризовали при 1,4 В (анодно), то при изменении потенциала до 0,7 В поверхность электрода, по крайней мере частично, все еще была бы некрыта оксидами в то же время, если бы потенциал такого анодно поляризованного электрода затем достиг значения 0,4 В, то произошло бы восстанов-леиие всей оксидной пленки. Вновь регенерированная поверхность платины имела бы те же характерные каталитические свойства, что и платинированная платина. Существует много противоречивых мнений 75] отиосительно природы этой регенерированной платиновой поверхности. [c.78]

    Моноплатиновый катализатор обладает более высокой активностью, селективностью и стабильностью по сравнению с алюмомолибденовым, что способствует его наиболее широкому распространению в 50-е и бО-е гг. прошлого века. Однако довольно высокое содержание платины в катализаторе и её стоимость подтолкнули исследователей на поиск и создание более дешевых катализаторов с хорошими каталитическими свойствами, в которых содержание платины было бы зтиеньшено в несколько раз. Одним из наиболее эффективных методов оказался метод частичной замены платины в составе катализаторов на различные менее дорогостоящие метатлы. [c.29]

    Институт RIPP разработал в дальнейшем катализаторы марок 3932 и 3933 [104]. Катализаторы 3932 и СВ-6, 3932 и СВ-7 аналогичны по своим каталитическим свойствам. Упрощение технологии производства катализаторов 3932, 3933 и пониженное содержание платины (0,21%масс.) в катализаторе 3932 способствует снижению стоимости и повыщению их конкурентоспособности. Комбинированная загрузка катализаторов 3932 и 3933 впервые была применена в 1995г. на установке риформинга Цзинаньского НПЗ [105]. [c.48]

    К первой группе гфинадлежат ионы металлов группы платины или их комплексы. Каталитическими свойствами обладают выделяющиеся на электроде металлы. Поскольку перенапряжение выделения водорода на них значительно меньше, чем на чистой поверхности ртути, то разряд ионов водорода происходит легче. [c.449]

    Реакционная среда также влияет на каталитические свойства катализатора, модифицируя его поверхность (объем). Так, исследования образцов серебра, нанесенного на оксид алюминия, показали, что в присутствии смеси этилена с кислородом при 250 °С наблюдается движение атомов и частиц серебра на поверхности носителя. Размеры частиц изменяются мелкие превращаются в более крупные конгломераты на носителе, а из атомов серебра образуются металлические кластеры. В случае реакции окислительного аммонализа метана на платино-родиевом катализаторе при 1100 °С, наоборот, происходит разрушение структуры металлов. [c.642]

    В 1780 г. в Германии родился фантазер-химик, которому до всего было дело. Химическое образование он получил, работая помощником аптекаря. Юноша раздражал своих наставников назойливыми вопросами и тайными химическими опытами, от которых не раз возникал пожар. В один прекрасный день он сумел купить небольшую фабрику медикаментов. Почти всю прибыль от выпуска лекарств молодой человек пустил на химические исследования и быстро разорился. Снова скопив капитал, он приобрел фабрику по отбеливанию тканей хлором, но в 1808 г. и это предприятие обанкротилось. От нищеты его спас друг и покровитель, поэт и философ Иоганн Гёте, занимавший в то время пост первого министра Саксен-Веймарского герцогства в Германии. Из научных достижений фантазера-химика больше всего известны триады химических элементов и огниво , где он использовал каталитические свойства платины для поджигания водорода. Кто был этот химик  [c.267]

    Действие ускоряющих реакций катализаторов можно замед-лить и вовсе уничтожить другими веществами. Так, железо, ускоряющее превращение азота и водорода в аммиак, теряет свою каталитическую способность в присутствии незначительных коли честв соединений серы. Платина, служащая катализатором для окисления двуокиси серы в трехокись, теряет свое каталитическое свойство, когда в газах находятся соединения мышьяка кантакт-ное окисление аммиака в азотную кислоту сильно замедляется соединениями мышьяка, серы, фосфора. Поэтому говорят об отравлении катализаторов и о каталитических ядах [c.105]

    Направления дальнейших исследований. Обширный класс интерметаллических соединений, особенно очень стабильных Бруеровских соединений, представляет интерес для широкого применения в катализе, особенно в области получения синтетического топлива. Так, появляется возможность приготовления нанесенных интерметаллов, которые имеют необычно высокую термическую и химическую стойкость, комбинацией металлов группы УП1 с титаном, стронцием, гафнием, ванадием, ниобием, таллием, хромом, молибденом и вольфрамом. Из-за очень сильных взаимодействий, возникающих при образовании данных соединений, ожидается, что спекание будет существенно уменьшено. Такие сильные взаимодействия, по-видимому, модифицируют электронные и каталитические свойства металла группы УП1. В некоторых случаях это может приводить к ухудшению каталитических свойств. Например, для 2гР1з интенсивное изъятие электронов атомами циркония делает платину заметно истощенной по электронам, а поэтому менее металлической, чем платина нулевой валентности. Такое чрезмерное взаимодействие можно уменьшить или регулировать использованием в качестве второго элемента металла, расположенного -справа или слева от циркония (например, молибдена). [c.139]

    Калиш и Бурштейн [74] установили, что при адсорбции кислорода на платине в приповерхностном слое растворяется до 100 ионо-слоев кислорода. Темкин и Кулькова [75] заметили аналогичное явление при адсорбции кислорода на серебре. Так же как и на платине, в приповерхностном слое растворялось до пяти монослоев кислорода. По данным японских исследователей [76], даже при длительном восстановлении серебра в водороде прп 275° атомы кислорода не удаляются из металла. В случае достаточно толстого слоя окисла (порядка десятков атомных слоев) химические и электронные характеристики поверхности катализатора определяются свойствами окисной пленки, и металл не будет оказывать значительного влияния на каталитические свойства. В случае же тонкого слоя (порядка нескольких атомных слоев) свойства поверхности катализатора определяются металлической подложкой. [c.21]

    Каталитические свойства металлических катализаторов также изменяются при действии добавок. Особенно сильное действие оказывает введение металлоидных добавок. Кислород, захваченный массивной платиной, по данным Крылова [100], изменяет ее каталитическую активность при окислении водорода. Максимум активностп соответствует примерно количеству кислорода, необходимого для образования одного монослоя. При окислении газов на серебре кислород ие только участник окислительной реакции, но и активатор серебра. Исследуя сорбцию кислорода на пористом серебре, Темкин и Ку.лькова [75] показали, что через 185 час. серебро поглотило пять монослоев кпслорода, изменивших электронные свойства серебра и его каталитическую активность. Хориути, Танабе п др. [295] установили сильное изменение каталитических свойств платины, никеля и других металлов, наблюдаемое при введении галоидов. По данным Кемброна и Александера [108], а также по материалам различных патентов введение галоидов сильно изменяет активность серебряного катализатора. Добавки 0,001—0,05% Те и Se увеличивают избирательность серебра по отношению к реакции иолучения окиси этилена. [c.199]


Смотреть страницы где упоминается термин Платина каталитические свойства: [c.92]    [c.66]    [c.428]    [c.131]    [c.135]    [c.22]    [c.54]    [c.140]    [c.276]   
Гетерогенный катализ в органической химии (1962) -- [ c.74 , c.180 , c.192 , c.197 , c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Платина, свойства



© 2025 chem21.info Реклама на сайте