Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки методы синтеза

    Десять лет, прошедших с момента выхода в свет второго издания книги, отмечены дальнейшим развитием химии высокомолекулярных соединений. Изучены механизмы некоторых реакций синтеза полимеров, выявлены новые свойства и возможности уже известных полимеров, синтезирован ряд новых полимеров. Интенсивно развивалась химия карбоцепных полимеров, получаемых путем термического разложения органических полимеров. Замечательны успехи химии биологически активных полимеров — биополимеров. Все это нашло отражение в новом издании книги. Пересмотрены и дополнены новыми данными все разделы, посвященные методам синтеза полимеров особенно это коснулось ионной полимеризации, полимеризации, инициированной ион-радикалами и переносом электрона, и циклополимеризации. В главе Превращение циклов в линейные полимеры заново написан раздел Ионная полимеризация циклов . Новыми данными пополнен раздел Химические превращения полимеров . Значительно расширена последняя часть книги Краткие сведения об отдельных представителях высокомолекулярных соединений . Здесь особое внимание уделено термостойким полимерам, которые приобрели чрезвычайно важное техническое значение и химия которых особенно успешно развивалась и совершенствовалась. В этом издании значительно большее внимание по сравнению с предыдущим уделено успехам в синтезе биологически активных полимеров белков и нуклеиновых кислот. Из нового издания книги исключен раздел Основы физикохимии высокомолекулярных соединений , так как в настоящее время имеется ряд книг, специально посвященных этим вопросам. [c.10]


    Установлено строение нескольких белков, разработаны методы синтеза пептидов с заданной последовательностью расположения аминокислот и синтезированы некоторые белки. [c.8]

    Удивительно простая идея этого нового метода синтеза состоит в том, что аминокислота закрепляется через свою карбоксильную группу на нерастворимом легко фильтруемом полимере, и затем пептидная цепь постепенно наращивается с С-конца. Для этой цели К-замещенные аминокислоты вводят в реакцию с реакционноспособными группами полимерной смолы. С аминокислоты, ковалентно соединенной с полимерной частицей, удаляется Ы-защитная группа, и полученный аминоацильный полимер реагирует со следующей Ы-защищенной аминокислотой. Пептидная цепь ступенчато наращивается на полимерной матрице. На последней стадии синтеза Меррифилда расщепляется ковалентная связь между С-концевой аминокислотой построенной полипептидной цепи и якорной группировкой полимерного носителя. Нерастворимый носитель может быть отделен от находящегося в растворе полипептида простым фильтрованием. Решающее преимущество метода Меррифилда состоит в том, что избегают трудоемких и требующих много времени операций по очистке промежуточных продуктов. Ценный продукт реакции все время остается прикрепленным к полимерному носителю, в то время как избытки реагентов и побочные продукты удаляются фильтрованием. Простота эксперимента и возможность автоматизации привели сначала даже к мнению, что благодаря этой новой синтетической концепции будет, наконец, решена проблема химического синтеза ферментов и других белков. Однако после подробного изучения и интенсивной разработки этой новой техники синтеза были выявлены серьезные лимитирующие факторы, которые впоследствии привели к реалистической Оценке этого метода. Конечно, сведение трудных стадий высаживания и очистки при обычных методах в растворе к простому процессу фильтрования в твердофазном синтезе уже означает неоспоримое преимущество. [c.179]

    Замечательные успехи в синтезе белков, достигнутые в последние годы, стали возможны после того, как Меррифилдом был разработан метод синтеза на твердом носителе. Принцип метода состоит в том, что исходная С-концевая аминокислота связывается ковалентно с нерастворимым полимером пространственной структуры и затем все последовательные стадии синтеза пептидной цепи проводятся на этом носителе. При этом отпадает необходимость выделения на каждой стадии синтеза полученных пептидов, так как они остаются привязанными к носителю, и становится возможным простой промывкой носителя удалять побочные продукты синтеза и непрореагировавшие исходные вещества. [c.381]


    Наивысшей ступенью химизации пищевого производства будет химический синтез белковых препаратов. Теперь уже разрабатываются методы органического синтеза ряда аминокислот, определенный набор которых может частично заменить собственно белковые препараты. Твердо установлено, что добавка аминокислот в пищу человека повышает усвояемость растительных белков. Химический синтез некоторых сложных белков — полипептидов, содержащих десятки и сотни аминокислотных остатков, удалось осуществить пока лишь в лабораторных условиях. Кроме того, разрабатываются химические методы извлечения белков и сахаров из трав, овощных и древесных отходов, водорослей. [c.12]

    Стратегическую модификацию постепенного наращивания пептидов или белков представляет разработанный в 1963 г. Меррифилдом пептидный синтез на полимерных носителях. Несмотря на сенсационный успех этого метода (синтез протекает в двухфазной системе и есть возможность его автоматизации), возлагаемые на него большие ожидания до сих пор полностью не исполнились. [c.98]

    В соответствии с основным делением химических соединений, по типу входящих в составное звено элементов, можно выделить неорганические, органические и элементоорганические полимеры. По происхождению полимеры бывают природные (встречаются в природе, например, натуральный каучук, крахмал, целлюлоза, белки), модифицированные (дополнительно измененные природные полимеры, например, резина) и синтетические (полученные методом синтеза). По характеру соединения составных звеньев в составе макромолекулы различают полимеры линейные, разветвленные, лестничные, трехмерные сшитые и их видоизменения (рис. 31.1). По отношению к нагреванию выделяют термопластичные и термореактивные (см. ниже). По типу химической реакции, используемой для получения, различают полимеризационные (реакция полимеризации) и поликон,ценсационные (реакция поликонденсации) полимеры. [c.603]

    Данные, приведенные в табл. 2-И, хотя и не полностью демонстрируют все достижения, однако они отражают тенденцию применения классического метода синтеза для получения белков. В общем объекты такой величины демонстрируют границы современного химического синтеза, правда в отдельных случаях этот предел может быть преодолей. На причины этого здесь уже многократно указывали. Наибольшие трудности встречаются при конденсации фрагментов из 50 или более аминокислотных остатков. [c.227]

    Следует отметить также, что поликонденсация имеет большое значение и как метод синтеза природных полимеров, поскольку многие важнейшие биополимеры, такие, как белки, нуклеиновые кислоты, крахмал, целлюлоза, хитин и другие, очевидно, получаются в живых и растительных организмах посредством различных процессов поликонденсации. [c.7]

    Итак, благодаря избирательности бифуркационных флуктуаций и их строгой согласованности структурная самоорганизация белковой молекулы приобретает детерминистические черты (случайность порождает необходимость). Из конформационно жестких и взаимодействующих с ними лабильных фрагментов возникают нуклеации, которые через ряд чисто случайных, но тем не менее неизбежных и строго последовательных событий входят в домены или в нативную трехмерную структуру белка. Весь процесс самосборки пространственной структуры не требует времени больше, чем затрачивается на рибосомный синтез белковой цепи. Уникальность бифуркаций, порядок их возникновения и устойчивый конструктивный характер обусловлены конкретной, отобранной в ходе эволюции аминокислотной последовательностью. В то же время рассматриваемая модель свертывания не исключает образование "неправильных" промежуточных состояний, содержащих структурные элементы, отсутствующие в конечной конформации. Более того, поскольку в основу модели положен беспорядочно-поисковый механизм, осуществляющий сборку белка методом "проб и ошибок", то возникновение непродуктивных состояний белковой цепи становится неизбежным. Однако они нестабильны, так как продуктивные состояния, появляющиеся в результате бифуркационных флуктуаций, всегда более предпочтительны по энергии. К обсуждению этого вопроса вернемся в главе 17 при количественном описании механизма ренатурации панкреатического трипсинового ингибитора. [c.98]

    Достижения в области синтеза пептидов позволяют автоматизировать процесс и вести его ио заданной программе. С помощью приборов, называемых синтезаторами, получены пептиды, содержащие десятки аминокислотных остатков, и даже некоторые белки Аналогично синтезу пептидов автоматизации поддается и метод анализа первичной структур >1 пептидов. [c.417]

    Белки несомненно самые сложные из известных нам полимеров. Поэтому весьма важно было открытие, впервые сделанное Вудвордом, метода синтеза высокополимерных полипептидов из одной, двух или трех аминокислот..  [c.37]

    Это утверждение уже устарело. В 1963 г. впервые был синтезирован природный белок — инсулин. Сейчас методы синтеза белков значительно усовершенствованы, и их синтез уже не является проблемой. Химики могут синтезировать и другие сложнейшие природные биополимеры — нуклеиновые кислоты. См. Шамин А. Н. Химический синтез белка (исторический очерк).— М. Наука, 1969, 115 с. [c.183]


    Очень часто при описании методов синтеза и свойств пептидов не рассматриваются аналогичные методы синтеза и свойства не менее важных соединений — фосфодиэфиров. Действительно, стратегия синтеза и проблемы, которые при этом возникают (например, использование ДЦГК, защитные группы, синтез на полимерном носителе и т. д.), весьма похожи, если не одинаковы, хотя никогда не обсуждаются параллельно. Восполнить этот пробел— вот цель настоящей главы. При этом, как и ранее, проводится сравнение с биосинтезом фосфатной связи. Следовательно, в настоящей главе сравниваются химические и биологические (биоорганические) свойства двух функционально важных классов макромолекул белков и нуклеиновых кислот. Разумеется, мы дополним эту картину, рассмотрев свойства еще двух мононуклеотидов, играющих важную роль в биологических процессах,— нук-леозидтрифосфатов и циклических нуклеотидов. Это показывает, что, подобно аминокислотам, для биологических систем важны не только полимерные молекулы. Рассматривая этот вопрос, мы вновь проведем сравнение химического и биологического путей синтеза. Освещаются результаты исследований, опубликованные в литературе, включая 1980 г. [c.104]

    Ферментативные системы, связанные с функцией кофермента В12, достаточно сложны. В связи с этим имеется несколько сообщений об очистке В12-зависимых ферментов или В12-связывающих белков с помощью аффинных сорбентов, обладающих сродством к витамину В12. Фактически для очистки ферментов или белков аффинная хроматография широко используется как один нз наиболее привлекательных методов [270]. С этой целью был разработан метод синтеза нерастворимого носителя кобаламинсефарозы (рис. 6.14). Этот носитель использован для очистки М-5-метилтетрагидрофолатгомоцистеин1юбаламинмстилтрапс-феразы из Е. oli. [c.394]

    В главе Аминокислоты изменения коснулись главным образом разделов, посвященных синтезу и анализу, причем особое внимание уделено биотехнологическим способам получения аминокислот, асимметрическому синтезу и новейшим методам выделения. В главе Пептиды более точно изложены и обоснованы цели химического синтеза и введен краткий исторический очерк развития этой области. Защитные группы представлены в таком порядке, как это обычно принято в литературе. При описании методов синтеза пептидов, которых в настоящее время известно около 130, авторы ограничивались наиболее широко применяемыми в практике пептидного синтеза. Кроме того, затронуты новые интересные направления пептидного синтеза, как, например, ферментативный. В разделе Пептидные синтезы на полимерных носителях рассмотрены важнейшие варианты этих синтезов. Семисинтез белков описывается во вновь введенном разделе Стратегия и тактика . В этом же разделе авторы попытались критически оценить синтез пептидных и белковоподобиых соединений и определить его возможности и границы применения. [c.7]

    Познание химического сгрое-ния белков позволило решить вопрос о их синтезе. В этом отношении также достигнуты большие успехи. В настоящее время используют разработанный в начале 60-х годов твердофазный синтез. При этом первая аминокислота закрепляется на полимерном носителе (специальной полнстирольной смоле) и к ней последовательно подшиваются все новые и новые аминокислоты. По окончании синтеза готовая полипептидная цепь снимается с носителя. Таким методом были синтезированы инсулин, рибонуклеаза, а за ними и многие другие белки. Для синтеза рибонуклеазы необходимо было осуществить более десяти тысяч отдельных операций. В настоящее время разработаны автоматы, осуществляющие все необходимые операции по заданной программе. [c.336]

    Большое значение амидной связи для понимания биохимии белков привело к развитию специальных методов синтеза амидов в мягких условиях. Один из них состоит во взаимодействии кислоты с дицикл огексилкарбодии-мидом (ДЦК) с последующей реакцией промежуточного продукта с амином, приводящей к амиду. Этот лтетод дает амиды с очень высокими выходами [c.125]

    Вслед за этим в 1902 г. Гофмейстер выдвинул гипотезу об амидообразной связи аминокислотных остатков в белке, которая и легла в основу полипептидной гипотезы. Она же послужила основанием Э. Фишеру н Т. Курциусу для разработки методов синтеза пептидов. Одновременно с синтезом многочисленных пептидов, завершившихся синтезом нонадека-пептида, проводились исследования то выделению пептидов из белков. Был выделен ряд пептидов, тождественных с синтетическими. Они давали биуретовую реакцию и расщеплялись протеолитическими ферментами высшие пептиды обладали коллоидны ми свойствами. Все эти факты в тот период были достаточным подтверждением выдвинутой полипептидной теории. Однако методы органической химии, применявшиеся для выделения пептидов из гидролизатов белков, а именно фракционированная кристаллизация, извлечение органическими растворителями, получение производных и т. д. оказались для этой цели мало пригодными. Число выделенных пептидов было настолько незначительным, что возникли сомнения в справедливости выдвинутой теории. [c.520]

    Объем настоящей главы ограничен рассмотрением аминокислот, которые, как было установлено, входят в состав белков. Пептиды, синтезированные нерибосомальными методами, которые содержат более широкий набор аминокислот, обсуждаются в гл. 23.4. Небелковые аминокислоты в свободном виде встречаются в таком изобилии и структурном разнообразии, что трудно обобщить их состав и методы синтеза. Обзор по этой области дан Томпсоном и др. [1], последующие работы удобно суммированы в годовом обзоре по химии аминокислот [2] для детального ознакомления с указанными соединениями отсылаем читателя к упомянутым источникам. Химические реакции ос-аминокислот, иные чем реакции, представляющие аналитический интерес, так же как и химия -, у-и ш-аминокислот, описаны в гл. 9.6. [c.225]

    Разработка твердофазного метода синтеза пептидов (см. гл. 23.6) привела к усовершенствованию некоторых стадий в процессе последовательной деградации. Так, стало чрезвычайно просто отделять 2-анилинотиазолиноны-5 от остального пептида или белка. После разработки автоматического секвинатора с использованием твердой фазы [20] появились промышленные приборы [c.267]

    Химия распозгагает мегадами синтеза пептидной связи, т. е. линейной сшивки аминокислот (см. [20]). Эти методы, не имеющие ничего общего со способом синтеза белка в живой клетке (см. ниже гл. 9), обычно применяются для получения полиаминокислот — гомополимеров аминокислот, сходных с белками. Однако если первичная структура белка известна, то осуществим его химический синтез in vitro. Так были синтезированы белковые гормоны кортикотропин и инсулин. Меррифилд автоматизировал метод синтеза и впервые получил настоящий искусственный белок, обладающий ферментативной функцией,— рибонуклеазу [21]. [c.78]

    Из трех возможных разбиений нуклеотидной последовательности на кодоны выбрать правильное часто удается по наличию при этом разбиении открытой рамки считывания — последовательности кодонов, среди которых на большом протяжении не встречается кодонов-терминаторов. Для случайной последовательности вероятность появления в определенном месте кодона-терминатора достаточно велика — 3/64, или около 0,05. Для определения положения первого кодона, участвующего в программировании полипептидной цепи, мойсно определить в исследуемом белке методом Эдмана несколько аминокислотных остатков с N-конца и затем найти на полинуклеотиде адекватную последовательность кодонов. В случае наличия или подозрений о наличии интронов лучше всего иметь дело не с геном, а с ДНК, комплементарной зрелой информационной РНК, в которой в результате сплайсинга участки, соответствующие интронам и поэтому не принимающие участия в кодировании,полипептидной цепи, отсутствуют. Такую комплементарную ДНК можно получить с помощью так называемой обратной транскрипции — матричного синтеза ДНК по информации, содержащейся в мРНК с помощью ферментов обратной транскрипций, содержащихся в некоторых вызывающих опухоли вирусах, например в вирусе птичьего миелобластоза. [c.174]

    В52—1919), немецкий химик-органик, иностранный почетный член Петербургской АН (1913). Образование получил е Боннском и Страсбургском университетах. Выполнил фундаментальные исследования по химии различных природных соединений. Разработал методы синтеза производных пурина, углеводов, пептидов, обнаружил и объяснил специфичность действия ферментов. Провел первые исследования аминокислотного состава белков. Экспериментально доказал (1902), что аминокислоты связываются между собой посредством карбоксильной группы и аминогруппы, образуя пептиды. Лаурввг Нобелевской премии по химии (1902) [c.125]

    Комплекс современных методов синтеза нуклеиновых кислот позволяет исходя нз мононуклеотидов получать гены, кодирующие белки длиной более 100 аминокислотных остатков. Первым этапом работы является химический синтез олнгодезоксирнбонуклеотидов, которые затем с помощью ферментов нуклеинового обмена, таких, как Т4 полннуклеотидкнназа, Т4 ДНК-лигаза и ДНК-полимеразы, превращаются в двухцепочечные фрагменты ДНК (рнс, 207). Мето- [c.370]

    Усилия огромной армии ученых, работающих в области макромолеку-лярной химии, привели к получению обильного научного материала. Для характеристики объема исследований по их результатам, находящим отражение на страницах научной печати, достаточно сказать, что за последнее время ежегодно публикуется свыше 20 тысяч научных стате11 и патентов, относящихся только к области синтетических макромолекулярных соединений. Если к этому добавить, вероятно, столь же большое количество материала, относящегося к области природных полимеров, т. е. целлюлозы, крахмала, белков и других веществ, то каждый ясно представит себе огромный объем материала и трудности его отбора. Поэтому мы старались выбрать лишь материал, относящийся главным образом к области синтеза высокомолекулярных соединений, которая является ведущей в полимерной химии. При этом кратко рассмотрели работы, относящиеся к производству высокополимеров, и дали динамику его роста по годам и затем рассмотрели прогресс в области методов получения высорсомолекулярных соединений. С весьма краткой характеристикой описаны новые высокомолекулярные соединения, синтезированные в последнее время п представляющие практический интерес. Количество таких соединенп весьма велико, и естественно, мы были вынуждены упомянуть только те из них, для которых уже известны области применения или достаточно вероятна возможность их использования в различных областях современной техники, а также имеющие принципиальное значение для развития методов синтеза и теории химии полимеров. [c.3]

    Основные научные исследования посвящены изучению свойств белков и их биосинтеза. Установил образование ацетилфосфата из цитрилфосфата и регуляторную роль аминокислот в биосинтезе белков. Изучил синтез белка в си-лосах за счет аммонийного азота. Исследуя нарушения обмена веществ при сахарном диабете, предложил пути нормализации обмена. Разработал методы выделения и очистки тканевых белков. Установил зависимость основных биосинтетических процессов от процессов карбоксилирования, на основе чего предложил способ повышения продуктивности животных. [c.158]


Смотреть страницы где упоминается термин Белки методы синтеза: [c.92]    [c.504]    [c.175]    [c.652]    [c.194]    [c.5]    [c.397]    [c.469]    [c.413]    [c.186]    [c.255]    [c.194]    [c.28]    [c.496]    [c.28]    [c.677]    [c.28]    [c.409]    [c.9]    [c.652]    [c.330]    [c.370]    [c.519]    [c.519]   
Органическая химия (1990) -- [ c.630 ]




ПОИСК







© 2024 chem21.info Реклама на сайте