Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипропилен применение

    Полипропилен благодаря ряду ценных свойств, не присущих ранее известным термопластам, активно вытесняет многие виды полимеров и находит все новые области применения. Ниже сравни- [c.301]

    Для изготовления труб применяется полипропилен с очень низким показателем текучести расплава, причем работают прп телшературах 240—250 С. Полипропиленовые трубы выдерживают окружные напряжения от 60 до 80 кгс/см . Усталостная прочность, вероятно, средняя между усталостной прочностью полиэтилена низкого давления (50 кгс/см ) ц непластифицированного поливинилхлорида (100 кгс/с.м ) трубы из полипропилена становятся хрупкими прп О °С. Особый интерес может представить применение этих труб для нодачи жидкостей при повышенных температурах. [c.304]


    Весьма перспективен полипропилен — материал, аналогичный полиэтилену, но имеющий более высокие температурные пределы применения — до 150°С. [c.24]

    На основе разработанных в последнее время систе-м каталитической цепной полимеризации олефинов получены кристаллические волокнообразующие полимеры. Из синтезированных полиолефинов в качестве сырья для производства волокон промышленное применение находят полиэтилен и в особенности изотактический кристаллический полипропилен. [c.344]

    Благодаря специфичности свойств стереорегулярных полимеров они нашли свои особые области применения. Так, из них получают волокна высокой прочности. В частности, хорошим сочетанием механических и других свойств обладает изотактический полипропилен. Стереорегулярные полимеры, построенные из закономерно чередующихся звеньев нескольких мономеров, играют большую роль также и в биологических процессах. Так. в некоторых белках цепи [c.565]

    Из полимерных материалов в химической промышленности США широко применяются полиэтилен, полипропилен, фторопласты, кремний-органические полимеры, композиции на основе эпоксидных смол и др. Из них делают различную емкостную аппаратуру, отдельные детали арматуры, трубопроводы. Полимерные материалы используются как защитные покрытия на деталях, работающих в агрессивных средах, или для футеровки сосудов. Липкие ленты из полимеров применяются для обмотки трубопроводов. Перспективным является их применение в качестве замазок для полов химических производств [278]. [c.218]

    Благодаря комплексу ценных технических свойств полипропилен находит широкое применение в самых разнообразных областях. Изделия [c.13]

    Применение вязкостных присадок определяется в основном их сырьевой базой. В, этом отношении представляют большой интерес атактический полипропилен [161], сополимеры этилена с пропиленом [162] и продукты их термического разложения [163]-, сополимеры этилена с другими а-олефинами [164] или диенами, полимер З-метилбутена-1, сополимеры лаурилметакрилата, бутил-метакрилата, метилметакрилата и стирола, стереоспецифические полимеры бутадиена и сопряженных диенов С4- Сб [англ. пат. 1172697 пат. США 3312621]. [c.141]

    В будущем исследования и разработки технологии катализаторов Циглера — Натта, по-видимому, будут занимать такое же важное место, как и в последние 25 лет. Они будут сконцентрированы главным образом на применении нанесенных катализаторов для блоксополимеризации и полимеризации в газовой фазе, уменьшении коррозионных остатков и образовании однородных сферических частиц для исключения стадии таблетирования. Необходима дальнейшая модификация катализатора, сокатализатора и условий полимеризации, поскольку получающийся неэкстрагированный полимер не всегда имеет такие же литьевые характеристики, как экстрагированный полипропилен, получаемый на обычных катализаторах. [c.218]


    В последующем катализаторы Циглера—Натта нашли широкое применение при полимеризации любых мономеров — пропена, бутенов, диеновых углеводородов С — С. В результате появились полипропилен, г<ис-полибутадиен и 1<ис-полиизопрен (об этом см. в разделе Соревнуясь с природой в этой же главе), различные [c.126]

    Полипропилен имеет температуру плавления 170°, вместо. 125° для полиэтилена, и получаемые из него волокна более прочны. Это определяет его дальнейшее применение. [c.591]

    Стереорегулярность полимера определяет его механические, физические и другие свойства. Например, высококристаллический полипропилен обладает высокопрочными механическими свойствами и прекрасной теплостойкостью. Он может применяться в качестве конструкционного материала. В то же время полипропилен с неупорядоченным строением (атактический) представляет собой мягкий материал, напоминающий каучук. Такой полипропилен не нашел до сих пор существенного практического применения, если не считать его использования в качестве дешевой добавки к дорожному асфальту. [c.377]

    Применение катализаторов Циглера — Натта позволяет синтезировать практически 100%-ный стереорегулярный (пространственно упорядоченный) полибутадиен с полимеризацией мономеров только в 1,4-положениях и созданием u -конфигурации в каждом элементарном звене (1,4-г ис-полибутадиен). По некоторым показателям этот полимер мало отличается от натурального каучука, а по стойкости к процессам старения даже превосходит его. Этим же методом можно получать изотактический полипропилен, а также полиизопрен (1,4-г с-полиизопрен), который служит синтетическим заменителем натурального каучука. [c.398]

    ПОЛИОЛЕФИНЫ — продукты полимеризации непредельных углеводородов этиленового ряда (этилена, пропилена, бутиленов и др.). П. занимают одно из первых мест среди пластмасс по объему производства и применению в различных отраслях промышленности и быту. Практическое значение имеют полиэтилен, полипропилен, полиизобутилен, а также их сополимеры. [c.198]

    Применение. В больших количествах алкены используются для получения полимеров (полиэтилен, полипропилен, полихлорвинил), растворителей (спиртов, дихлорэтана, эфиров гликолей), антифризов (жидкостей, снижающих температуру замерзания воды). [c.196]

    Первыми полимерами, получившими широкое применение, были полиэтилен и полипропилен. [c.216]

    Применение. Полиэтилен и полипропилен химически устойчивы, механически прочны, поэтому их широко применяют при изготовлении оборудования в различных отраслях промышленности (аппараты, трубы, сосуды и т, д,). Они обладают высокими электроизоляционными свойствами. Полиэтилен и полипропилен в тонком слое хорошо пропускают ультрафиолетовые лучи. Пленки из этих материалов используются вместо стекла в парниках и теплицах. Их применяют также для упаковки разных продуктов. [c.27]

    Применение. Этилен и другие алкены являются важным сырьем для химической промышленности. Из этилена и пропилена получают пластмассы — полиэтилен и полипропилен. Этилен служит исходным веществом для промышленного получения многих органических веществ. [c.322]

    Каким образом физические свойства полимера обусловлены его структурой Как эти физические свойства сказываются на его применении Чтобы ответить на эти вопросы, рассмотрим подробно изотактический полипропилен. Этот изомер полипропилена имеет спиральную цепочечную структуру вследствие отталкивания между метильными группами. Такая спиральная геометрия делает изотактический полипропилен высокоплавким (т. пл. 170 °С), что позволяет вытягивать его в волокна (рис. 8-8). [c.333]

    Среди полимерных материалов, появившихся за последние годы, достойное место занимает высокомолекулярный кристаллический полипропилен. Обладая ценным сочетанием свойств и, что очень ва кно, относительно низкой стоимостью, он исключительно быстро проник во многие отрасли промышленности, в том числе в промышленность синтетических волокон. Быстрому развитию производства и применения нового пластика в немалой степени благоприятствовало и то, что он появился на мировом рынке в период, когда уже считалось общепризнанным, что ускорение технического прогресса и расширение производства товаров широкого потребления невозможны без использования синтетических материалов. [c.7]

    Изучение истории развития других синтетических полимеров и структуры их потребления по методам переработки и областям применения приводит к выводу о том, что в ближайшее время полипропилен больше будет перерабатываться экструзией. [c.12]

    Полипропилен обладает ценным сочетанием свойств, изучение которых привлекает внимание многих исследователей, работающих как в области теории макромолекулярной химии и физики, так и в области переработки и применения полимерных материалов. [c.95]

    Нередко для определения возможности применения пластика необходимо знать морозостойкость или, вернее, температуру хрупкости. С этой целью испытуемые образцы подвергаются действию ударной нагрузки при низких температурах. За температуру хрупкости полимера принимается самая низкая температура, при кото-зой половина образцов под действием удара не разрушается . Известно, что полипропилен при пониженных температурах имеет относительно плохую ударопрочность. И хотя атактические фракции, оказывающие пластифицирующее действие на изотактический полипропилен [50], несколько повышают его ударопрочность, гораздо лучшие результаты дает добавка какого-либо каучукоподобного полимера [51, 52], нанример бутилкаучука (табл. 5.4). [c.115]


    У Жун-Жуй с сотрудниками [96] и Беати с сотрудниками [97] этим же методом прививали винилацетат и 2-винилпнри-дин на окисленный в потоке воздуха полипропилен. Применение метода гидропероксидирования по отношению к бензил-и этилцеллюлозе дало мало обнадеживающие результаты, так как выход привитого сополимера получился очень небольшой [98]. [c.21]

    II его производных, из которых особый интерес представляют акрилопитрил, окись пропилена и полипропилен. Подробно описаны методы получения, свойства и области применения этих продуктов, представлены технологические схемы производства, дан обзор производственных мощностей и поа-ребления в ряде варубежных стран. Приведена обширная библиография. [c.4]

    Можно работать нри значительно более низких давлениях, если использовать в качестве катализатора алкилалюминий в смеси с тетрахлорэтаном [266, 267], окисью хрома на носителе [268— 270], никелем или кобальтом на древесном угле [271] или промо-тированным молибдатом алюминия [272]. При этом полимеры имеют более линейную структуру. Подобным образом может быть получен и полипропилен. Из этилено-нропиленовых и этилено-бутеновых смесей можно получить высокомолекулярные сополимеры с хорошей эластичностью. Полиэтилен представляет интерес прежде всего с точки зрения его отличных электроизоляционных свойств его химическая стойкость, легкость обработки, легкий вес и большая упругость дают возможность его применения для многих других целей. [c.581]

    В большей части фильтров применяют гибкие перегородки (металлические сетки или ткань). В химической промышленности используют фильтрующие перегородки из волокон полиамидных (капрон), полиэфирных (лавсан), полиолефиновых (полиэтилен, полипропилен), хлорсодержащих (хлорин), акрилнитрильных (нитрон), стеклянных и др., а также фильтрующие перегородки из бумажной ленты одноразового использования. В исключительных случаях допускается применение ткани из натуральных волокон (хлопка, шелка, шерсти). Жесткие несжимаемые перегородки изготовляют из керамики н керметов из-за ограниченных размеров такие фильтрующие перегородки выполняют чаще всего в виде патронов. Преимущество таких перегородок состоит в возможности проведения процесса фильтрования при высоких температурах. Намывной слой предохраняет поры фильтрующей перегородки от быстрого закупоривания в случае разделения малокоицентрированных суспензий, содержащих тонкодисперсные твердые частицы. Намывной слой из порошкового или волокнистого материала (диатомит, перлит, асбест, целлюлоза и др.) наносят на фильтрующую перегородку предварительно (-(ДИ вводят в подлежащую очистке суспензию в определенных [c.285]

    Совсем недавно фирма Ай Си Ай (Англия) разработала пока динственный сорт огнестойкого полипропилена. Многое делается для повышения термо- и светостабильности полипропилена, ведутся исследования в области синтеза и испытания различных стабилизаторов для полипропилена. Из других полиолефинов, представляющих практический интерес, следует отметить полибутилены. Хотя полибутилены менее распространены, чем полиэтилен и полипропилен, но они находят все более широкое применение в различных областях техники. [c.347]

    Парафиновая композиция для предохранения виноградных прививок от иссушения мохет представлять трехкомпонентную систецу, состоящую из парафина, окисленного петролатума и атактического полипропилена. Так как прочностные свойства в данном случае не имеют существенного значения, то добавление полиэтиленового воска и церезина нецелесообразно. Исследование свойств данной композиции в зависимости от содерхания компонентов с применением метода планирования эксперимента позволило рексашендовать следунций состав ( мас.) парафин -55, окисленный петролатум - 40, атактичесжий полипропилен - 5. Испытания этой композиции в виноградарских хозяйствах подтвердили ее эффективность. [c.105]

    Наибольщее практическое применение имеет сггл1-триметилани-лин (мезидин), используемый в качестве полупродукта в синтезе красителей, а также мезитол, получаемый при щелочном плавлении соответствующей сульфокислоты мезитилена и используемый в качестве антиоксиданта. На основе мезитилена получают и некоторые другие антиоксиданты, стабилизирующие полипропилен [110]1. [c.93]

    Реакции второго типа характерны для процессов с получением ценных полимерных материалов, из которых особенно важны по- лиэтилен, полипропилен, полиизобутилен и синтетические каучу-ки. Температурные пределы полимеризации олефинов Сг—С4 составляют 160—550 °С, давление от 0,1 до 200 МПа. Применением катализаторов, так же как и повышением давления, можно снизить температуру реакции. [c.310]

    Полимерные материалы и их применение в строительстве полиэтилен, полипропилен и полиизобутилен, полистирол, поливинилхлорид, поливинилацетат, поливиниловый спирт, полиметилметакрилат, эпоксидные и полиэфирные полимеры, полиуретаны. Фенолоалвдегид-ные, мочевиноформальдегидные и меламиноформальдегидные полимеры. Кремнийорганические и фурановые полимеры, полисульфидные каучуки. Альтины. [c.172]

    Источником давления, способного разрушить полностью герметизированный НК аккумулятор, является кислород, образующийся на положительном электроде на стадии заряда. Образования водорода при заряде кадмиевого электрода не происходит, поскольку отрицательная активная масса находится в избыточном количестве по отношению к активной массе положительного электрода. Основное условие герметизации заключается в осуществлении замкнутого кислородного цикла, при котором весь газообразный кислород адсорбируется на поверхности кадмиевого электрода и электрохимически восстанавливается до ОН- по реакции О2 + 2НгО + 4е40Н-. Эффективный доступ кислорода к кадмиевому электроду обеспечивается минимальным межэлектродным расстоянием, применением тканевых (капрон) или нетканых (полипропилен) газопроницаемых сепараторов, а также снижением до определенных пределов объема электролита. Стальной корпус герметичного аккумулятора способен выдержать временное повышение давления в том случае, если по каким-либо причинам (превышение зарядного тока, по- [c.228]

    Особо селективные жидкие фазы по отношению к некоторым соединениям. Растворы нитрата серебра в полиэтиленгликоле, полипропилен-гликоле и бензилцианиде. Бензилцианид не гигроскопичен и не требует применения сухого газа-носителя, В этом его преимущество по сравнению с гликолями. Максимальная рабочая температура колонкн 40° С. Ион серебра в AgNOs способен как акцептор электронов проявлять донорно-акцепторное взаимодействие с олефинами, ароматическими соединениями и селективно удерживать их в колонке, Наблюдается хорошее разделение цис- и транс-олефинов. Парафины не задерживаются этим адсорбентом и быстро проходят через колонку. [c.283]

    Значейие полимеров в жизни современного общества огромно, и рост производства и потребления полимеров — одно из генеральных направлений развития народного хозяйства. Трудно назвать какую-либо отрасль промышленности и транспорта, культуры и быта, сельского хозяйства и медицины, оборонной и космической техники, где можно было бы обходиться без полимеров, которые выступают как совершенно новые материалы с неизвестными ранее свойствами. В последнее время темпы роста производства полимерных материалов непрерывно увеличиваются. Это касается таких полимеров, как полиэтилен, полипропилен, фенопласты, поливинилхлорид, полистирол, полиэфиры, полиамиды. Растет также экономическая эффективность их производства и применения. [c.6]

    Полимеризация в растворе позволяет регулировать молекулярную массу и молекулярно-массовое распределение полимера, получать структурно-однородные продукты. Она находит все более широкое применение в технологии производства многих промышленных полимеров. Для получения стереорегулярных полимеров, блок-сополимеров этот способ часто является единственно возможным для промышленного производства. Полимеризацией в растворе получают все стереорегулярные эластомеры цис-, А-по-лиизопрен и полибутадиен), блок-сополимеры бутадиена и стирола, некоторые виды статистических их сополимеров, полиэтилен высокой плотности, стереорегулярнын полипропилен, сополимеры этилена и пропилена, некоторые виды полистирола, полиметил-метакрилата и другие полимеры. [c.82]

    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    В соответствии со строением полимера полипропилен имеет хорошие диэлектрические свойства. Они не хуже, чем у полиэтилена, и практически не зависят от частоты тока и от изменения йлажности. Сочетание хороших диэлектрических свойств с высокими физико-механическими показателями открывает широкую область применения полипропилена для радио и электротехнических деталей и в качестве кабельной изоляции. При этом важно принять во внимание дешевизну и доступность сырья — пропилена, находящегося в больших количествах в пропан-пропиленовой фракции крекинг-газа. [c.107]

    Чолипропилен получается из пропилена аналогично полиэтилену. Долгое время считалось, что при полимеризации пропилена можно получать лишь маслообразные продукты. Когда же научились проводить стереоспецифичную полимеризацию пропилена, оказалось, что при этом получается прозрачный материал с температурой размягчения 160—170 С, прочностью на разрыв 260— 400 кг/см , хорошими электроизолирующими свойствами. Полипропилен применяется для изготовления высококачественной электроизоляции, деталей электро- и радиоаппаратуры, труб,деталей машин. Продавливая расплав полипропилена через тонкие отверстия (фильеры), получают нити полипропиленового волокна. Это волокно обладает большой прочностью, химической стойкостью. Его применяют для изготовления канатов, рыболовных сетей, фильтровальных тканей. Применение полипропиленового волокна в текстильной промышленности ограничивается его невосприимчивостью к обычным красителям, одпако уже появились красители, окрашивающие это волокно. [c.329]

    Молекулярный вес изотактического полипропилена— около 30 000. Технологический процесс получения полипропилена мало отличается от процесса получения полиэтилена низкого давления. Полимеризацию пропилена осуществляют обычно в растворителе (например, н-геп-тане). Если хотят получить полипропилен с высоким содержанием изотактической части, то применяют в качестве катализатора комплекс алкилалюминия с треххлористым титаном. При применении четыреххлористого [c.383]

    Полипропилен обладает ценными свойствами высокой температурой плавления (около 170° С) в сочетании с жесткостью и прочностью. Обладает небольшой плотностью (0,9 г1см ), высокой химической стойкостью, хо рошими диэлектрическими свойствами. Благодаря своим свойствам и доступности исходного пропилена полипропилен может найти применение для изготовления труб и трубопроводов для подачи горячей воды и различных химических веществ, центробежных насосов, химической аппаратуры, для изготовления большого ассортимента различных предметов домашнего обихода, санитарии и гигиены (посуда всевозможного назначения, ванны и пр.). [c.384]

    В США промышленное производство полипропилена началось в конце 1957 г. на установке мощностью 9 тыс. тп1год [19]. В настоящее время полипропилен производится также па двух заводах в Италии и ФРГ. Перспективы применения полипропилена настолько велики, что в США шесть фирм разрабатывают на опытных установках технологию получения полипропилена. [c.33]

    В связи с быстрым развитием производства иолиироиилена и расширением областей его применения в периодической печати появилось большое 1Л1сло работ, посвященных, этому материалу. Интерес к полипропилену в Советском Союзе особенно возрос в связи с началом его промышленного производства. [c.5]


Смотреть страницы где упоминается термин Полипропилен применение: [c.5]    [c.111]    [c.379]    [c.382]    [c.588]    [c.324]   
Общая химическая технология органических веществ (1966) -- [ c.383 ]

Прогресс полимерной химии (1965) -- [ c.183 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 ]

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2 (1959) -- [ c.195 ]

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6 (1961) -- [ c.31 , c.75 ]

Прогресс полимерной химии (1965) -- [ c.183 ]

Технология пластических масс Издание 2 (1974) -- [ c.75 , c.76 ]

Справочник по пластическим массам (1967) -- [ c.39 , c.40 ]

Технология пластических масс (1977) -- [ c.36 , c.38 ]

Синтетические полимеры и пластические массы на их основе Издание 2 1966 (1966) -- [ c.73 , c.76 ]

Основы переработки пластмасс (1985) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Полипропилен



© 2025 chem21.info Реклама на сайте