Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изоэлектрическая концентрация

    Изоэлектрической концентрацией водородного иона является та, при которой изменяется направление движения. Таким образом, были определены изоэлектрические точки многих амфотерных веществ некоторые приведены в табл. И.  [c.222]

    В настоящей работе более подробно исследуется влияние pH на потенциал диффузного электрического слоя. Интерес к этому вопросу продиктован следующими соображениями. Так как в настоящее время далеко не всегда ясен механизм образования фо-потепциала, то пе известно, какие из используемых электролитов и в какой степени влияют на его величину. Это создает ряд трудностей при исследовании топких иленок, от которых можно избавиться, вообще уничтожив двойной электрический слой. Последнее можно осуществить путем изменения pH раствора д ) тех пор. пока не будет достигнута изоэлектрическая концентрация. [c.234]


    В результате анионные ВМС очень сильно уменьшают диффузионную подвижность влаги и миграцию ионов в торфяных системах (рис. 4.14) [230]. Действие катионных ВМС при малых концентрациях аналогично действию КПАВ. По мере увеличения содержания катионных ВМС в торфяных системах коэффициент диффузии воды и, следовательно, интенсивность миграции ионов увеличиваются, проходят через максимум, соответствующий изоэлектрическому состоянию материала (минимуму содержания в нем связанной воды), а затем снижаются [c.80]

    Увеличение концентрации ЦТАБ в системе после достижения изоэлектрического состояния (>2,5-10 М) приводит к росту положительных значений электрокинетического потенциала. Однако степень агрегации частиц (вплоть до концентрации ЦТАБ Ю М) вновь начинает расти, что может быть обусловлено разрушением ГС при появлении заряда на поверхности частиц, а также некоторой гидрофобизацией поверхности при [c.179]

    Таким образом, чем менее кислыми свойствами обладает вещество (поверхностный слой), помещенное в какой-либо растворитель, тем больше значение его изоэлектрической точки в данном растворителе. Соотношение (11.79) более точно отражает зависимость в разбавленных растворах, когда активности можно приравнять концентрациям. Понятие изоэлектрической точки широко применяется также и для растворенных электролитов. [c.50]

    Смесь ионов Си +, d2+, Bi + и Hg + лучше всего разделяется в 0,5 соляной кислоте, при этом медь находится в виде катиона и передвигается на значительное расстояние к катоду, кадмий — в виде незаряженного комплекса и остается в изоэлектрической точке (или едва заметно перемещается к аноду), висмут — в виде однозарядного апиона, а ртуть — двухзарядного аниона, причем оба перемещаются к аноду. Повышение или понижение концентрации соляной кислоты (до 1 М или 0,1 М) ухудшает разделение. [c.350]

    Концентрации нитрата серебра и иодида калия равны. В этом случае золь находится в так называемом изоэлектрическом состоянии, т. е. в состоянии, при котором электрокинетический потенциал (дзета-потенциал) равен нулю. В этом случае противоионы диффузного слоя перешли в адсорбционный слой, а потому гранула лишена заряда. [c.320]

    Механизм электролитной коагуляции. Как известно, гидрофобные коллоиды неустойчивы в изоэлектрическом состоянии, т. е. электронейтральные частицы коагулируют с наибольшей скоростью. На рис. 111 показана схема снятия заряда с коллоидной частицы при добавлении электролита с двухзарядными анионами. Как видим, гранула становится электронейтральной в том случае, если противоионы диффузного слоя, заряженные отрицательно, перемещаются в адсорбционный слой. Чем выше концентрация прибавляемого электролита, тем сильнее сжимается диффузный слой, тем меньше становится дзета-потенциал и, следовательно, тем быстрее начинается процесс коагуляции. При определенной концентрации электролита практически все противоионы перейдут в адсорбционный слой, заряд гранулы снизится до нуля и коагуляция пойдет с максимальной скоростью, так как отсутствие диффузного слоя обусловит значительное понижение давления расклинивания. [c.370]


    Скорость синерезиса коллоидов различна. Она возрастает с повышение. температуры и увеличением концентрации. Иногда увеличение концентрации геля ослабляет процесс синерезиса, что характерно для крахмала, агар-агара, ацетилцеллюлозы и вискозы. У студней, образованных белками, скорость синерезиса зависит также и от pH. Так, для желатина он активнее всего проявляется в изоэлектрической точке. [c.398]

    В водном растворе при определенной концентрации водородных ионов, отвечающей изоэлектрической точке, у всякого амфо-лита (амфотерного электролита) число ионизированных основных групп равно числу ионизированных кислотных групп. При этом число как тех, так и других групп минимально.. Молекулу белка в изоэлектрическом состоянии следует считать в целом нейтральной. хотя она и имеет еще ионизированные группы. Условно ее можно изобразить в этом состоянии следующим образом  [c.469]

    В двойнослойной области основная часть подводимого электричества затрачивается на изменение заряда двойного электрического слоя. Измерения изоэлектрических сдвигов потенциала (см. 3.1) однозначно доказывают, что в сернокислых растворах в двойнослойной области потенциалов происходит постепенное уменьшение количества адсорбированного водо-лО. рода и возрастание количества адсорбированного кислорода, т. е. перекрывание областей адсорбции водорода и кислорода. Степень этого перекрывания зависит от pH раствора и концентрации ионов 50 " и уменьшается с уменьшением pH и с ростом концентрации 80 . В целом, однако, количество адсорбированных водорода и кислорода в сернокислых растворах на платине в двойнослойной области невелико. Степень перекрывания областей адсорбции водорода и кислорода зависит также от природы металла. Так, она наименьшая в сернокислых растворах на палладии и возрастает при переходе к платине, иридию, родию, рутению и осмию. [c.188]

    В случае (1) образуется катион, (2) — анион соли аминокислоты. Внутренняя соль существует лишь при строго определенной для каждой аминокислоты концентрации водородных ионов (изоэлектрическая точка). При электролизе такого раствора аминокислота не перемещается ни к катоду, ни к аноду. [c.167]

    Величина pH, при которой концентрации катионов и анионов равны, называется изоэлектрической точкой. Для глицина она равна 5,97. В изоэлектрической точке все аминокислоты имеют минимум растворимости и минимальное буферное действие. Буферное действие максимально при рН = рК кислоты или основания. [c.207]

    Явления коагуляции и пептизации связаны с разрушением и образованием двойного электрического слоя. Адсорбция того или иного иона может привести к перемене знака заряда коллоидной частицы. Это состояние системы называют изоэлектрической точкой. Изоэлектрическая точка может быть охарактеризована концентрацией иона, pH раствора, ионной силой раствора. [c.421]

    Изучение набухания желатина. В несколько маленьких пробирок или в цилиндры на 5—10 мл насыпьте по 0,5 Г порошка желатина (смесь белковых веществ животного происхождения) и в каждую прилейте по 3 мл растворов с различными значениями pH, например 2,0 4,7 7,0 10,00 и т. п. (буферные растворы или имеющиеся в лаборатории растворы кислот и щелочей известных концентраций). Желательно, чтобы один из растворов имел pH 4,7 (ацетатный буфер), отвечающий изоэлектрической точке желатина. [c.432]

    Второй вириальный коэффициент можно уменьшить, снизив заряд макроиона или повысив концентрацию нейтральной соли. Поэтому целесообразно измерять осмотическое давление белков в изоэлектрической точке. [c.218]

    Практически можно подобрать такую концентрацию ионов водорода, при которой количество ионов РСОО и НЫНз будет одинаковым. Такое состояние называется изоэлектрическим. Концентрация ионол водорода, при которой белок находится в изоэлектрическом состоянии, называется изоточкой белка. [c.192]

    Монаган, Уайт и Урбан определили концентрации некоторых солей, при которых скорость электроосмоса, потенциал течения и скорость электрофореза для стекла пирекс равны нулю, т. е. определили изоэлектрические концентрации этих солей. Полученные ими результаты представлены в табл. 9. На рис. 7 показано изменение значений -потепциала в зависимости от концентрации только одной соли — четыреххлористого тория. Для стекла, покрытого белком (пленка желатины легко образуется вследствие адсорбции), концентрации водородных ионов, при которых все три явления отсутствуют, были всегда одни и те же. [c.215]

    Изоэлектрические концентрации для нирекса и отекла, покрытого [c.216]

    Опыт показывает, что изоэлектрическая точка может не совпадать с точкой эквивалентности ц()и титровании. Например, вблизи точки эквивалентности осадок Agi адсорбирует I- сильнее, чем Ag+. Поэтому, если смешать эквивалентные количества растворов KI и AgNOa, то образуется осадок, содержащий некоторый избыток (около 0,1%) I- по сравнению с содержанием Ag+. Соответственно и концентрации Ag+ и 1 в растворе не будут равны 10 г-ион/л каждая, как это должно бы быть в точке эквивалентности титрования при ПРа х 10 , а составляют [Ag+] = = 10 г-ион/л и [1 ] = 10 г-ион/л. Следовательно, при титровании раствора KI раствором AgNOa избыток А +-ионов в растворе создается несколько преждевременно, т. е. титрование заканчивается прежде достижения точки- эквивалентности. Наоборот, при титровании раствора AgNOa растЕюром KI избыток 1 -ионов, вследствие более сильной адсорбции их осадком, обнаружится после достижения точки эквивалентности, т. е. раствор будет несколько перетитрован. [c.326]


    Модель двойного электрического слоя, отвечающая этим простейшим представлениям, ириводит к двум возможным значениям -потенциала. Если предположить, что все заряды, находящиеся в растворе, способны перемещаться вместе с жидкостью или при движ( нии твердого тела относительно жидкости пе увлекаться вместе с ним, то -потенциал по величине -будет совпадать с -потенциалом, и его изменение с концентрацией электролита должно подчиняться формуле Нернста. Если заряды, находящиеся в растворе, при относительном движении жидкости и твердого тела связаны только с последним и перемещаются вместе с ним, то -потенциал всегда будет равен нулю. Ни одно из этих следствий, вытекающих из теории Гельмгольца, не согласуется ни с экспериментально установленным соотно1дением между (или й м.ь) и -потенциалами, ни с найденной экспериментально зависимостью -потенциала от концентрации (если не считать, что -потенциал лзожет быть равен нулю в очень концентрированных растворах электролнтов и ири определенном составе раствора, отвечающем изоэлектрической точке). Теория Гельмгольца не объясняет также причины изменения заряда повер> ности металла в присутствии поверхностно-активных веществ при заданном значении -потенциала. Вместе с тем теория конденсированного двойного слоя позволяет получить значения емкости двойного слоя, согласующиеся с опытом, а при использовании экспериментальных значений емко- [c.262]

    Иногда, например при исследовании белков, оказывается необходимым создавать условия, в которых аминокислота при диссоциации дает одинаковую концентрацию как положительных (ЫН КСООН), так и отрицательных (NH2R 00 ) ионов. В чистой воде такое условие невыполнимо, так как константы диссоциации обеих ступеней неодинаковы. Чтобы одну ступень дисссщиации усилить, а другую — подавить, необходимо создать в растворе соответствующую концентрацию водородных ионов, добанляя либо кислоту, либо основание. Значение pH, при котором амфолит образует одинаковые концентрации положительных и отрицательных ионов, называется изоэлектрической точкой. В изоэлектрической точке, очевидно, соблюдается условие [c.511]

    Следует подчеркнуть, что эффект разрушающе-структури-рующего влияния ионов на ГС должен зависеть от концентрации ионов вторичная гидратация наиболее ярко проявляется при достаточно высоких константах комплексообразования и вдали от изоэлектрической точки, а также на поверхностях, активные группы которых не способны (или обладают слабой способностью) образовывать водородные связи с молекулами воды. Приведенные выше возможные механизмы влияния ионов на ГС необходимо учитывать при рассмотрении устойчивости конкретных дисперсных систем. [c.173]

    Некоторую особенность имеют растворы полиэлектролнтов. Если для растворов незаряженных полимеров приведенная вязкость линейно экстраполируется в характеристическую вязкость при с = О, то для водных растворов полиэлектролитов наблюдается постоянный рост приведенной вязкости с уменьшением концентрации. Такая особенность обусловлена увеличением диссоциации полиэлектролитов при разбавлении, вызывающей рост заряда н соответственно объема макромолекулы (отталкивание заряженных функциональных групп). Для растворов полиэлектролитов характерна зависимость вязкости от pH среды. Минимальная вязкость наблюдается в изоэлектрической точке. Уменьшению отмеченных эффектов способствуют низкомолекулярные электро-литы, [c.372]

    Изоэлектрическая точка золя может быть изменена в результате адсорбции на иоверхности частиц полиамфолитов (ПАВ или высокомолекулярных соединений). Поскольку при значениях рИ среды, близких к изоэлектрической точке, золи, как правило, становятся неустойчивыми, адсорбционное модифицирование поверхиости частиц часю применяют для защиты их от коагуляции. Нри такой стабилизации поверхность частиц приобретает свойства адсорбата. При этом заряд частиц и изоэлектрическая точка зависят не только от природы стабилизатора, но и концентрации электролитов. [c.100]

    Степень ионизации каждой группы зависит от pH среды и ионной силы раствора. Для полиамфолитов характерным является такое состояние, когда число ионизированных кислотных групп равно числу ионизированных основных, т. е. суммарный заряд макромолекул равен нулю. Это наблюдается при определенной концентрации ионов водорода, отвечающей изоэлектрической точке. В изоэлектрическом состоянии макромолекула стремится свернуться в наиболее плотный клубок. [c.152]

    Скорость протекания конформационных переходов зависит от концентрации и молекулярной массы белка. В результате ассоциации полипептидных цепей в растворах возникают тройные спирали. Такое самоупорядочение макромолекул в растворе протекает наиболее эффективно вблизи изоэлектрической точки. [c.382]

    Это уравнение применимо для расчета pH только в растворе амфолита (в рассматриваемом случае ги роселенита натрия) и не пригодно для растворов сильных кислот, например серной. Уравнение (85) можно также применить для расчета pH амфолитов трех- и четырехосновных кислот (например, Н2РО4 , НР04 и др.). Даже в тех случаях, когда уравнение (85) неприменимо для расчета pH растворов амфолитов (для очень сильных или очень слабых многоосновных кислот), по уравнению (85) всегда получают значение pH, при котором концентрация амфолита максимальна. Это значение pH называют изоэлектрической точкой амфолита. [c.134]

    Диффузная часть двойного электрического слоя наиболее лабильна и изменчива. Противоионы обмениваются на другие ионы того же знака. Повышение концентрации раствора приводит к вытеснению противоионов из диффузной в плотную часть двойного электрического слоя. То.лщина двойного электрического слоя и величина -потенциала уменьшаются. При некоторой концентрации раствора (примерно 0,1 н) все противоионы оказываются вытесненными в адсорбционный слой и С-потенциал становится равным нулю. В этом случае изменение межфазового потенциала от его максимального значения на поверхности твердой фазы до нулевого целиком происходит в пределах адсорбционного слоя. Такое состояние коллоидной мицеллы называют изоэлектрическим состоянием. [c.307]

    В изоэлектрической точке, отвечающей для амфотерных по своим свойствам поверхностей тому состоянию, когда число ионов разных знаков в пограничном слое одинаково и двойной слой исчезает, отсутствует и механизм для осуществления направленного потока жидкости. При возрастании концентрации электролита в растворе диффузный слой ионов сжимается и принимает структуру гельмгольцевского слоя, что также приводит к исчезновению механизма для передвижения жидкости, и электроосмос прекращается. Иллюстрацией этой закономерности являются результаты опытов Рэми (рис. 24). [c.50]

    Заряд частиц лиофильных коллоидов значительно ниже или вообще отсутствует. Заряд на частице лиофильного коллоида изменяется очень легко при прибавлении небольших количеств электролитов. Изменение pH растворов приводит к легкой перезарядке коллоидного раствора. Лиофильные коллоиды заряжаются отрицательно, если концентрация водородных ионов меньше, чем в изоэлектрической точке, и наоборот. В изоэлект-рическом состоянии лиофильные системы в отличие от лиофобных устойчивы (кроме некоторых белков). В электрическом поле лиофильные коллоиды или не перемещаются, или перемещаются в любом направлении. [c.424]

    Водородный показатель рН о, устанавливающийся в растворе чистого белка, характеризует изоионную точку. Очень часто она близка к изоэлектрической. Различие между ними увеличивается, если снижается концентрация белка, так как изоэлектрическая точка не зависит от концентрации полиэлектролита. В изоэлектрической точке электростатическое притяжение между противоположно заряженными частями макромолекул глобулярных белков выражается всего сильнее. В таком состоянии макромолекулы стремятся принять наиболее плотную клубковую упаковку, и растворимость их становится минимальной. Так как в достаточно концентрированных растворах изоионная точка близка к изоэлектрической, то тщательной очисткой раствора от примесных электролитов можно выделить белок из раствора. Для этой цели удобен метод электродиализа. [c.215]

    Значение pH раствора полиамфолита, при котором средний суммарный заряд на цепи равен нулю, называется изоэлектрической точкой (ИЭТ). Величина ИЭТ не зависит от концентрации полиамфолита и является важной константой полиамфолита. На различии в ИЭТ основано фракционирование смесей белков, например, методом электрофореза. При определении ИЭТ учитывается суммарный заряд макромолекул, обусловленный не только диссоциацией кислотных и основных групп полиамфолита, но и специфическим связыванием посторонних ионов из раствора. ИЭТ определяется с помощью электрокинетических методов (в частности, электрофореза) либо косвенным путем по изменению свойств, связанных с зарядом макромолекул. Значения степени набухания, растворимости полиамфолитов, осмотического давления и вязкости их растворов в ИЭТ проходят через минимум. Вязкость в ИЭТ минимальна (рис. IV. 7), поскольку вследствие взаимного притяжения присутствующих в равном количестве противоположно заряженных групп полимерная цепь принимает относительно свернутую конформацию. При удалении от ИЭТ цепь полиамфолита приобретает суммарный положительный (в кислой области pH) или отрицательный (в щелочной области pH) заряд [c.127]

    Отметим некоторые, наиболее характерные свойства электро-кинетического потенциала. Прежде всего его величина зависит от концентрации электролитов, присутствующих в растворе. Увеличение концентрации ионов в растворе влечет за собой уменьшение толщины диффузного слоя и сопровождается уменьшением величины электрокинетического потенциала, между тем как величина термодинамического потенциала ф остается неизменной. Из этого факта становится понятной сущность так называемого изоэлектрического состояния, т. е. такого состояния системы, когда скорость электрофореза (или электроосмоса) становится равной нулю. Это состояние наступает тогда, когда диффузный слой под влиянием прибавляемых электролитов сжимается до толщины б, а -потенциал станет равным нулю. Частица, находящаяся в изоэлектрическом состоянии, не реагирует на электрический ток, в связи с чем возникло представление о разрушающем действии электролитов на коллоидные частицы. Следует учитывать, что такое разряжение частицы не сопровождается снятием с ее поверхности ионов. Число потенциалообразующих ионов остается неизменным, но они оказываются полностью нейтрализованы противоионами, находящимися в непосредственной близости к ядру мицеллы. [c.325]


Смотреть страницы где упоминается термин Изоэлектрическая концентрация: [c.75]    [c.193]    [c.187]    [c.287]    [c.175]    [c.178]    [c.179]    [c.196]    [c.164]    [c.81]    [c.423]    [c.149]    [c.156]   
Химия коллоидных и аморфных веществ (1948) -- [ c.0 , c.215 ]




ПОИСК







© 2025 chem21.info Реклама на сайте