Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись углерода в органических синтезах

    Для синтеза аммиака и процессов гидрирования органических соединений необходим водород, значительную часть которого производят конверсией природного газа (в основном метана) с водяным паром [38, 39]. Первую стадию этого процесса осуществляют на никелевом катализаторе с получением синтез-газа, содержащего водород и окись углерода. Вторую стадию — конверсию окиси углерода с водяным паром — проводят на окислах железа и хрома. Ныне открыты катализаторы, содержащие окислы меди и медные шпинели, которые много активнее железохромовых и позволят полнее использовать СО в конверсии с водяным паром. [c.10]


    Окись углерода широко используется в качестве сырья при синтезе различных органических веществ. [c.90]

    Окись углерода является первоклассным сырьем для синтеза многих органических продуктов метанола, муравьиной кислоты, синтетического топлива, фосгена и т. п. В настоящее время окись углерода в виде генераторного, водяного и смешанного газов используется главным образом в качестве топлива, а также для получения водорода для азото-водородной смеси, применяемой при синтезе аммиака. Водород образуется при пропускании указанных газов в смеси с водяным паром над нагретым катализатором  [c.480]

    Сопровождающее эту реакцию значительное выделение тепла делает окись углерода ценным газообразным топливом. Однако наиболее широкое применение она находит как исходный продукт для синтеза различных органических веществ. [c.495]

    По-видимому, любое органическое соединение, содержащее ацетильную группу, будет при пиролизе давать некоторое количество кетена. Хотя этот синтез применим и для высших членов ряда, но его использование ограничено в основном первым членом ряда, который лучше всего может быть получен по этому методу как в промышленности, так и в лаборатории. Из различных лабораторных способов [5] наилучший выход (90—95%) был получен при пропускании ацетона над проволокой из хромеля А при 700—750 °С. При проведении пиролиза в камере предпочтительными являются более низкие температуры (около 500 С) для предотвращения дальнейшего разложения на окись углерода и газообразные олефины. Кетен, получаемый из ацетона, смешан с метаном, что может осложнять его абсорбцию. С другой стороны, при пиролизе уксусного ангидрида [6] или дикетена (разд. А.4) подобные газообразные продукты не образуются. [c.376]

    В органических растворителях реактив Гриньяра способен вступать в реакции с галогенидами металлов. К числу этих реакций относится частичное восстановление соли. Повидимому, окись углерода способна соединяться с одним из продуктов восстановления, который после разложения кислотой образует в числе других продуктов и карбонил металла. В водных растворах восстановление может быть осуществлено сульфидами, цианидами (см. синтез 76) и даже самой окисью углерода в сильнощелочных растворах  [c.223]


    Новый метод синтеза органических соединений из таких простых веществ, как окись углерода и водяной пар, несомненно, найдет в будущем применение в химической промышленности. Существенное значение для развития этого процесса имеет изучение элементарных стадий его. Суждение о них может быть высказано на основе изучения природы продуктов синтеза. [c.184]

    Однако по мере развития органической химии, катализа и техники высоких давлений удалось значительно развить химию окиси углерода. В настоящее время результаты, достигнутые в области синтеза из окиси углерода, позволяют считать, что моторное топливо и органические продукты можно получать в промышленном масштабе не только переработкой высокомолекулярных продуктов (нефти, нефтяных остатков и углей) термическими или каталитическими методами, но и путем синтеза из газов, содержащих окись углерода и водород. [c.326]

    Основным исходным веществом для синтеза является окись углерода, так как взаимодействие ее с другими простыми или сложными веществами при соответствующих катализаторах и условиях процесса позволяет получать разнообразные органические продукты. [c.327]

    При пиролизе и дегидрировании метана можно получать ацетилен, сажу и водород. При конверсии метана водяным паром или водяным паром и кислородом получают синтез-газ (СО-Ь -ЬНг) —сырье, используемое для дальнейшего органического синтеза, а также в отдельности чистую окись углерода и водород, которые применяют для процессов гидрирования и синтеза аммиака. Аммиак идет на синтез мочевины, представляющей ценный продукт для производства пластмасс и эффективное удобрение. [c.21]

Рис. 27. Окись углерода как сырье для синтеза органических соединений Рис. 27. <a href="/info/11665">Окись углерода</a> как сырье для <a href="/info/11714">синтеза органических</a> соединений
    За годы второй мировой войны в Германии был разработан ряд синтезов с помощью окиси углерода, данные о которых были опубликованы лишь в последнее время [67, 190]. Окись углерода вступает во взаимодействие с разнообразными органическими соединениями под давлением 200 атм, при повышенной температуре -200—300° и в присутствии катализаторов, например никелевых или кобальтовых. [c.346]

    С этого времени органический синтез получает в свое распоряжение кроме ароматических веществ два новых вида сырья — ацетилен и окись углерода, в связи с чем зарождается производство соединений жирного ряда. [c.10]

    При переработке топлива, добываемого из недр земли (каменного угля, нефти, природного и попутных газов), получают все главные исходные вещества для основного органического и нефтехимического синтеза 1) парафины и нафтены 2) олефины 3) ароматические углеводороды 4) ацетилен 5) окись углерода и син-тез-газ. В данной главе рассмотрены свойства, применение, методы производства и очистки этих веществ. [c.27]

    В промышленном органическом синтезе в качестве исходного сырья используется чистая окись углерода, и в особенности ее смеси с водородом [синтез-газ). Производство синтез-газа тесно связано с получением водорода, необходимого для многих промышленных процессов (синтез аммиака и моторного топлива, гидрирование ненасыщеных жиров и масел и т. д.). [c.118]

    Кроме синтез-газа для некоторых процессов основного органического и нефтехимического синтеза требуется концентрированная окись углерода (производство фосгена, карбоновых кислот и их производных, карбонилов металлов). Для ее получения можно использовать несколько методов, которые в разное время применялись в промышленности. [c.126]

    Выходящий из конденсатора газ содержит до 85 объемн. % окиси углерода 0,05% фосфора (потери) 0,2—0,4% РНз, 0,5—1% НгЗ и другие примеси. Если окись углерода, содержащаяся в отходящих газах, используется в органическом синтезе, ее следует очищать от фосфора, сероводорода и фосфористого водорода. Если [c.269]

    К сожалению, до сих пор сотни тысяч тонн окиси углерода, содержащейся в отходящих газах ряда промышленных производств, бесполезно сжигаются или выбрасываются в атмосферу. Можно ожидать, что в самом ближайшем будущем окись углерода займет не случайное, а прочное положение в качестве сырьевой базы промышленности органического синтеза. [c.6]

    Следует отметить, что окись углерода имеет большое значение не только как сырье для нефтехимии и промышленности органического синтеза. Проблемой огромной важности современной металлургии является очистка защитных атмосфер от следов СО и получение сверхчистых металлов разложением карбонилов. Карбонилы и карбонильные комплексы переходных металлов являются катализаторами не только реакции карбонилирования, но также и других промышленных реакций, например жидкофазного гидрирования, изомеризации, диспропорционирования. Окись углерода часто применяется при изучении адсорбционных свойств металлических и окисных, в том числе цеолитных, катализаторов, а карбонильные комплексы переходных металлов являются модельными системами при изучении структуры и превращений координационных соединений. В последние годы окись углерода привлекает внимание исследователей как газовый модификатор катализаторов селективного гидрирования ацетиленовых углеводородов в олефины. [c.163]


    Искусственный газ резко отличается по своему составу от естественного нефтяного газа он содержит значительное количество ненасыщенных углеводородов (реакционная способность которых дает возможность применять их для различных реакций органического синтеза и для получения синтетического авиационного горючего), а также водород. Так, в состав нефтяного газа (крекинг-газа) входят (объемн. %) предельные углеводороды — 39,0, непредельные углеводороды — 45,0, водород—12,0, окись углерода — 2,0, азот—1,0, двуокись углерода — 0,5, кислород — 0,5. [c.259]

    Выходящий из конденсатора газ содержит до 85% (об.) окиси углерода 0,05% фосфора (потери) 0,2—0,4% РНз, 0,5—1% НгЗ и другие примеси. Если окись углерода, содержащуюся в отходящих газах, использовать в органическом синтезе, ее следует очистить от фосфора, сероводорода и фосфористого водорода. Если газ употребляется в дальнейшем как топливо, его не очищают. Часть газа сжигают в топке 14 и подают вентилятором 13 в электрофильтр для его обогрева. [c.244]

    Степень разложения зависит от температуры, давления окиси углерода, концентрации соли меди и природы растворителя. В отсутствие воды хлористая медь не способна присоединять окись углерода. О приготовлении хлористой меди см. в книге Синтезы органических препаратов . [c.290]

    При помош,и процессов конверсии кислородом или водяным паром из метана получают синтез-газ (СО На) — прекрасное сырье для дальнейшего органического синтеза, а также чистую окись углерода, водород и синтез-газ (2На а) для производства аммиака, являюш,егося исходным сырьем для выработки удобрений. Неполным окислением метана при низких температурах могут быть получены формальдегид, метанол, ацетальде-гид. При хлорировании лгетана в промышленных условиях образуются хлористый метил, хлористый ыетплен, хлороформ и четыреххлористый углерод. Нитрованием метана получают нитрометан. [c.15]

    При взаимодействии с хлором дает хлорокись, или так называемой фосген, O I2. Окисв углерода восстанавливает оксиды многих металлов. С некоторыми металлами образует своеобразные комплексные соединения, называемые карбонилами металлов. В технике окись углерода используют как горючий газ, сырье для органического синтеза, восстановитель (в черной металлургии). Промышленное [c.196]

    В процессе работы на колошнике печи выделяется значительное количество газов, которые нужно удалить. При многих восстановительных процессах печные газы состоят главным образом из СО, которая на колошнике окисляется кислородом воздуха до СОг. В некоторых случаях, например при плавке сернистых руд на рош-тейн, в печных газах содержится много ЗОг — весьма едкого удушающего газа. При возгонке фосфора, газообразный фосфор сам является продуктом плавки. В двух последних случаях печь также безусловно необходимо закрывать и герметизировать в первом — для создания нормальных условий в цехе и защиты персонала, во втором — для улавливания пароз фосфора. Если руднотермическая электропечь имеет открытый колошник, то газообразные продукты плавки удаляют из рабочей зоны с помощью специальной вентиляционной системы. В таких печах окись углерода, сгорающего на колошнике, является высококалорийным топливом и сырьем для органического синтеза и ее следует использовать. Для этого также необходимо закрыть и герметизировать печь, чтобы исключить контакт окиси углерода с кислородом воздуха. Таким образом, целесообразность устройства закрытой печи вызывается еще желанней полезно использовать отходящие печные газы. [c.117]

    В промышленности окись углерода находит применение в качестве восстановителя в металлургических процессах, при рафинировании металлического никеля, при синтезе фосгена и дшогих других органических соединений. В лабораторной практике оиа применяется для получения карбонилов и ароматических альдегидов. [c.81]

    Главными исходными веществами для производства многочисленных продуктов основного органического синтеза являются различные углеводороды—парафины, олефины, диолефины, ацетиленовые и ароматические углеводороды, нафтоны, а также окись углерода и водород. [c.131]

    Нет сомнения в том, что в недалеком будущем окись углерода и водород, а затем, видимо, углекислый газ и вода будут важными исходньгми продуктами юинтеза. Отсюда ясно то эначевие, которое приобретает теория каталитического синтеза на основе СО и Нг. Создание этой теории как части более общей теории органического катализа менее сложно, чем разработка теоретических вопросов, например каталитической гидрогенизации фульве-нов или других сложных молекул. Ведь на примерах синтеза метанола или этилена из СО и Нг легче разобраться в механизме реакций, чем на примерах превращения сложных веществ. Кроме того, до определенных пределов синтез из СО и Нг представляет собой процесс постепенного перехода от простого к сложному. Из этого следует, что разработка теоретических вопросов каталитического синтеза на основе СО и Нг явится предпосылкой к созданию более общих теоретических положений катализа. [c.203]

    Выделение окиси углерода в окружающую среду и связанная с этим опасность интоксикации может возникнуть в химических лабораториях при неполном сгорании газов, органических веществ, подвергаемых сожжению, при приготовлении сплавов, при проведении синтезов, где окись углерода является исходным про-дз ктом или продуктом разложения. В основе действия окиси углерода на организм лежит ее высокое сродство к двухвалентному железу гемоглобина, в 200—300 раз превышающее сродство железа к кислороду. Вследствие этого окись углерода вытесняет кислород из гемоглобина и образует карбоксигемоглобин — недеятельную форму гемоглобина, что ведет к нарушению транспорта кислорода, развитию кислородной недостаточности и угнетению тканевого дыхания. [c.80]

    В нашей стране наибольшие количества метана используются в качестве бытового газа. Применение метана для органического синтеза — одна из труднейших задач, так как метан наиболее пассивен из всех парафиновых углеводородов. Однако эта задача в настоящее время принципиально (а в ряде случаев н практически) разрешена. Метан может быть превращен путе.м термического крекинга или под действием тлеющих разрядов в зысокореакционноспособный углеводоро д — ацетилен. Можно каталитически окислить метан до муравьиного альдегида или муравьиной кислоты хлорированием метана могут быть получены хлористый метил, хлористый метилен, хлороформ, четырех-хлористый углерод, а нитрованием — нитрометан. Метан также используется для промышленного синтеза синильной кислоты. Важный путь использования метана — конверсия его в окись углерода и водород (исходная смесь для синтеза метанола, син-тина и синтола), протекающая при действии на метан паров воды при высокой температуре в присутствии катализаторов. Наконец, большие количества метана используются для получения сажи (термическое разложение метана на углерод и водород), В Советском Союзе этим путем ежегодно получают сотни тысяч тонн сажи, предназначенной в качестве наполнителя для синтетического каучука и для других целей. [c.32]

    В современной химической технологии за сравнительно короткий промежуток времени получил широжое развитие и применение целый ряд процессов, основанных на проведении газовокаталитических реакций. К таким процессам относятся, например, синтез аммиака из азотоводородной смеси, синтез углеводородов, метанола и других спиртов из различных газовых смесей, состоящих из Нг и СО, Н2О и СО, Нг и СО2. Исходным сырьем для промышленных газово-каталитических синтезов в органической и неорганической технологии являются прежде всего водород, окись углерода и азот. [c.9]

    Указанный катализатор очень чувствителен к перегреву и действию ядов, поэтому содержание серы в газе не должно итревышать 2 мг/нлГ . Такая Степень очистки газа от серы яри условии, что органическая сера предварительно превращена в сероводород, достигается довольно легко (например, одновременно с абсорбцией СОг водой под давлением 10 ати). Другим очень сильным ядом для данного катализатора является карбонил железа, образующийся даже при температуре ниже 100° при соприкосновении с железом окиси углерода, находящейся под высоким давлением. Поэтому аппаратура для синтеза метанола, через которую проходит газ, сжатый в цилиндрах компрессора, Д0.ТЖНЗ быть изнутри выложена медью (желательно также применение дополнительного фильтра с активным углем). Вместо меди можно использовать кислотоупорную сталь, на которую окись углерода почти не действует. При хорошей очистке газа катализатор работает около 2 месяцев. [c.246]

    Идея построения углеродного скелета в процессе образования комплексов может открыть новый практически ценный путь синтеза органических соединений (Штернберг, 1958). На прямом солнечном свету из смеси диметилацетилена и Ре(С0)5 выделяются оранжевые кристаллы состава Ре(СО)5(СНз——СНз)г. Для этого вещества предложено строение я-комплекса, образующегося соединением двух молекул алкина с двумя карбонильными группами, так как на воздухе этот комплекс превращается в дурохинон, а под действием кислот количественно расщепляется на дурогидрохинон и окись углерода  [c.158]

    Фишер и Тропш обнаружили, что водород и окись углерода ( водяной газ , или синтез-газ ) в присутствии обработанного щелочью железа при давлении 100— 150 атм и 400—450° превращаются в продукт, состоящий главным образом из смеси кислородсодержащих органических соединений и углеводородов. Позже Фишер нашел, что при атмосферном давлении получается в основном смесь углеводородов. Под давлением 300— 400 атм над медью или окисным цинк-хромовым катализатором получается метиловый спирт. Над никелевыми катализаторами при 250° и нормальном давлении образуется метан, над рутением при 150 атм — высоко молекулярные твердые не встречающиеся в природе парафины с молекулярным весом более 8000. Интересно, что углеводороды, которые представляют основную массу продукта, состоят г.чавным образом из парафинов с [c.219]

    Окись углерода в смеси с другими газами широко используется в технике в качестве ценного газообразного топлива, так как горенне окиси углерода в токе кислорода (или воздуха) сопровождается выделением з1начительного количества тепла. Такие технически важные газы, как водяной, коксовый и другие, содержат значительные количества окиси углерода. Окись углерода применяется также для синтеза органических веществ. [c.31]

    В начальный период развития промышленности органического синтеза для получения органических соединений применяли главным образом растительное и животное сырье (древесину для получения уксусной кислоты, метилового спирта сахаристые вещества для производства этилового спирта и т. п.), а также продукты переработки каменноугольной смолы (бензол, толуол и др.). Позднее в качестве сырья стали применять карбид кальция СаСз получения ацетилена С2Н2) и генераторные газы, содержащие окись углерода — одно из важнейших исходных веществ органического синтеза. [c.197]


Смотреть страницы где упоминается термин Окись углерода в органических синтезах: [c.273]    [c.10]    [c.155]    [c.168]    [c.141]    [c.204]    [c.285]    [c.287]    [c.161]    [c.216]    [c.248]   
Катализ и ингибирование химических реакций (1966) -- [ c.21 , c.153 , c.303 , c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Углерод органический

окиси синтез



© 2025 chem21.info Реклама на сайте