Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина гидрогенизации

    Важным результатом сильной адсорбции алкина или диена является ее влияние на концентрацию водородных атомов на поверхности в течение реакции. Водородный обмен обычно происходит во время дейтерирования олефинов он фактически отсутствует или значительно ослаблен при дейтерировании алкинов или диенов это означает, что в последних случаях концентрация водородных атомов ниже. Таким образом, когда присутствует ал-кин или диен, положение равновесия олефин — алкил смещается в сторону адсорбированного олефина по сравнению с положением равновесия, когда эти соединения отсутствуют. Именно по этой причине в катализируемой платиной гидрогенизации бутадиена-1,3 первоначально образованный адсорбированный бутен-1 подвергается значительной изомеризации в бутены-2, тогда как гидрогенизация самого бутена-1 на платине при той же самой температуре сопровождается только слабой изомеризацией. [c.461]


    Ю, С, Залькинд изучил кинетику гидрогенизации многих ацетиленовых производных в жидкой фазе над платиной. Гидрогенизацию сопряженных систем, производных ацетилена и винилацетилена исследовал С, В. Лебедев. [c.14]

    Первый патент по каталитической гидрогенизации ацетилена в этилен появился в 1912 г. [68]. В этом патенте сообщалось, что катализатором гидрогенизации является любая смесь, содержащая один или несколько элементов из группы железо, никель, кобальт, медь, серебро, магний, цинк, кадмий, алюминий с одним или несколькими представителями группы платина, осмий, иридий, палладий, родий, рутений. [c.240]

    Платина и палладий заметно отличаются в отношении гидрогенизации этиленовой двойной связи фенилзамещенных олефинов, реакция гидрогенизации, катализируемая платиной, настолько сильнее тормозится (отравление), чем гидрогенизация в ирисутствии палладия, что ряды активности для платины и палладия различаются на порядок [84, 134, 164]. [c.249]

    Динамичность процесса гидрогенизации хорошо иллюстрируется рис. 2 [21]. Из рассмотрения равновесия видно, что если катализатор обладает достаточной активностью, необходимой для достижения требуемой скорости реакции, олефины скорее подвер- ваются полной, гидрогенизации при высоких температурах лишь при низком парциальном давлении водорода. Гидрогенизация ароматических углеводородов идет труднее она требует для своего осуществления или более низкой температуры, или более высокого давления по сравнению с гидрогенизацией олефинов. Низкотемпературная гидрогенизация широко не применяется в промышленности, так как требуемые для этого катализаторы (как никель или платина) очень активные при низких температурах, исключительно чувствительны к отравляющему действию серы, азота и т. д. и в результате отравления очень быстро теряют свою активность. При использовании же [c.276]

    Известны промышленные процессы изомеризации на хлористом алюминии в его присутствии можно осуществлять реакцию при низких температурах — от 50 до 150° С. Поскольку процессы подробно описаны [8, 75], далее они не рассматриваются. Весьма активно влияют на реакцию изомеризации катализаторы гидрогенизации и дегидрирования (сульфид вольфрама, окись молибдена, платина и др.) [76—79]. В промыщленности широко применяют платиновые и палладиевые катализаторы на кислых носителях — синтетических алюмосиликатах и фторированной окиси алюминия [7, 78, 80]. Эти катализаторы активны при 370—480° С. Несмотря на менее благоприятные термодинамические условия проведения реакции, чем при использовании хлористого алюминия, над платиновыми катализаторами также удается достичь глубокой изомеризации легких углеводородов. Так, степень изомеризации н-пентана за один проход может достигать 50—60%  [c.330]


    Медь и никель являются наиболее специфичными катализаторами для реакций гидрогенизации и дегидрогенизации, глинозем — для гидратации и дегидратации, серебро — для окисления. В качестве катализатора общего действия служит платина, [c.339]

    Ч. Теннантом. И,— серебристо-белый, очень твердый и хрупкий металл, т. пл. 2410° С, нерастворим в кислотах и даже в царской водке, растворяется лишь в состоянии тонкого измельчения. Б соединениях И. большей частью имеет степень окисления +3 и +4, иногда - -1, +2, +6, образует различные комплексные соединения. И. применяют как катализатор реакций гидрогенизации а виде сплавов с платиной его используют [c.112]

    Все платиновые металлы во многом сходны между собой. Это — благородные металлы, малораспространенные в природе. Встречаются только в самородном состоянии. Химически очень стойки. На воздухе и во влажных средах не тускнеют и не корродируют. Кислоты (НС1, НзЗО на них не действуют. Большинство платиновых металлов не растворяется даже в царской водке только платина в ней растворяется, а палладий растворим также и в НЫОз-Как и все металлы УИ1 группы, платина и ее аналоги — комплексообразователи и активные катализаторы. Как правило, они проявляют способность поглощать значительные количества газообразных На и Оа, переводя последние в химически активное состояние. Эта способность особенно сильно проявляется именно у платиновых металлов. Указанное явление носит название окклюзии-, оно имеет большое значение для катализации процессов гидрогенизации (присоединения водорода) или окисления. Так, например, Ре, Ки и Оз энергично катализируют процесс синтеза ЫНз чз азота и водо- [c.553]

    Для гидрогенизации всех видов углерод — углеродной связи активным является двухатомный ансамбль платины. Этому процессу отвечает кривая удельной активности, приведенная на рис. [c.111]

    Гидрогенизацию производят действием электролитического водорода в присутствии катализаторов — платины, никеля или кобальта при 130— 160 под давлением. [c.123]

    ЛИЮ, не привлекла к себе должного внимания. Отчасти это можно объяснить многоплановостью статей Фокина и тем, что сам он на первое место выдвигал метод электролиза, на второе— восстановление в газо- или парообразном состоянии, на третье — гальваническими парами и на последнее — водородистыми металлами, имея лшр в растворе. Указав затем на возможность гидрогенизации не в растворе, под давлением, Фокин 55 эту лестницу не перевернул. И хотя он предвидел, что техническое значение вероятно будет иметь никель, как металл более распространенный и дешевый , что никелю предстоит огромное значение , указывал и интервал температур для восстановления никеля из его закиси и т. д. (Фок., 1906, стр. 445, 437, 422), но его соблазняло то, что всего легче восстановительные процессы идут с палладием... платиной — при комнатной температуре, с большим выходом. [c.407]

    Это типичный случай большинства простых реакций, протекающих в растворах. Если же реакция происходит только на поверхности между двумя фазами, то говорят, что такая реакция гетерогенна. Имеется очень много примеров реакций этого типа среди них можно отметить контактный процесс окисления ЗОг кислородом на поверхности платино-асбестового катализатора и гидрогенизацию ненасыщенных соединений в жидких суспен-гшях никелевого катализатора Ренея (N 02). Кроме этих двух категорий реакций, имеется группа реакций, так называемых цепных процессов, скорость которых может зависеть не только от химического состава, но также от размера и геометрии поверхности, ограничивающей реагирующую систему. Хотя такие реакции классифицировались как гетерогенные, это определение не точное, поскольку реакция не ограничивается поверхностными слоями скорее всего поверхность лишь способствует процессам, происходящим в объеме газовой фазы или изменяет их. Типичными примерами таких реакций являются цепное окисление водорода, окиси углерода, углеводородов и фосфора. Большинство изученных газофазных реакций относится к этой категории. [c.17]

    Хотя имеется большое число исследований по кинетике как реакций обмена, так и реакций присоединения, механизм и порядок реакций недостаточно выяснены. В обычных условиях эксперимента на платине и никеле зависимость скорости реакции гидрогенизации оказывается первого порядка по Н2 и меняется от нулевого порядка по С2Н4ПРИ низких температурах до некоторого дробного порядка или единицы при более высоких температурах (от О до 200°). Такое поведение может быть объяснено тем, что активированный комплекс, образующийся на поверхности, содержит молекулу С2Н4 и два атома Н  [c.548]

    Полу гидрогенизация бутадиена, пиперилена и изопрена над платиной дает смеси, в которых содержатся все возможные продукты гидрогенизации [99]. Полугидрогенизация изопрена при 0° в присутствии никеля Ренея, который действует более избирательно, чем платина, дает равные количества 2-метилбутена-2 и 2-метилбутена-З [40]. Полугидрогенизация 2,3-диметилбутадиена-1,3 приводит к образованию в 2 раза большего количества продуктов присоединения в положение 1,4, чем продуктов присоединения в положение 1,2 [40]. [c.239]


    Другим примером, показывающим влияние катализатора на тип получаемых продуктов, является гидрогенизация 2,5-диметилгекса-диена-2,4 [77]. Этот углеводород подвергался гидрогенизации в растворе этанола при комнатной температуре и атмосферном давлении в присутствии платины, палладия и никеля Ренея. Продукт гидрогенизации исследовался после присоединения 1 моля водорода к 1 молю углеводорода. Преобладал продукт присоединения водорода в положение 1,2  [c.244]

    Некоторые g и углеводороды с сопряженной системой непредельных связей можно гидрировать при обычной температуре и атмосферном давлении, проводя реакцию последовательно через четыре ступени, с образованием триолефина, диолефина, моноолефина и парафина [147]. В присутствии платины непредельные углеводороды обычно гидрогени-зуются сразу до парафинов, но в присутствии никеля Реиея можно задержать реакцию на стадиях, соответствующих 1) частичн01Ч гидрогенизации тройной связи, 2) присоединению водорода к триепу в положение 1,6 и 3) присоединению к диену в положение 1,4  [c.245]

    С2Н5 -СН2-СН-СН2-СН2-СН-СН2—С2Н5 В двух углеводородах этой серии возникает пространственное затруднение, обусловленное разветвлением, и поэтому можно задержать реакцию гидрогенизации, катализируемую платиной, на стадии моноолефина СНз СНз СНз СНз [c.245]

    Реакционные способности сдедуюш их олефинов, определенные при гидрогенизации в присутствии платины, уменьшаются в таком порядке (1)> (П)> (1П)> (IV), а в присутствии палладия в порядке (III) > [c.249]

    Гидрогенизация в растворе уксусной кислоты при обычно температуре и атмосферном давлении в присутствии платины. Приводимые ниже данные охватывают бензол, алкилбензолы, арилбепзолы, циклогексадиены и циклогексены [140, 142, 143].. Было найдено, что скорость гидрогенизации относительно давления водорода первого порядка, относительно концентрации углеводорода — нулевого порядка и прямо пропорциональна количеству катализатора. Скорость реакции, отнесенная к темнературе 30° и постоянному количеству катализатора, следовала за изменением давления водорода. [c.250]

    В иачастве катализатора использовалась платина (20%), отложенная на активированном угле. Этот катализатор имел следующие характеристики 100%-ная гидрогенизация беизола проходи.иа при температуро 150° и обьсмной скорости 0,3 циЕШогексан при 300° и объемной скорости 0,3 дегидрировался на 80%. [c.256]

    Имеется много способов и методов приготовления никеля Ренея [141], никеля на кизельгуре [2, 59], платины [1], палладия [163] и хромита меди [2 . Эти методы эмпирические, но их следует придерживаться при приготовлении катализаторов, если желают получить воспроизводимые результаты. Некоторые из этих катализаторов гидрогенизации можно найти в продаже, и если целью работы не является изучение принципиальных вопросов катализа, то предпочтительнее такие катализаторы приобретать, а не приготовлять. [c.265]

    Все шесть металлов платшювой группы являются эффективными катализаторами гидрогенизации [19, 175], но обычно используются только платина и палладий. Каталитическая активность некоторых сплавов превышает аддитивный эффект обоих компонентов. Например, сплав меди и палладия (Р(1 > 47 %) и сплав меди с платиной (РЬ > 16 %) активны в такой же мере, как и сами металлы платиновой грунны [124]. [c.266]

    Гидрогенизация ацетиленовых и этиленовых углеводородов проходит легко в присутствии никеля, платины, палладия в ншдкой и паровой фазах. Даже циклоацетиленовые углеводороды с большим кольцом — циклооктин, циклононин и циклодецин — легко гидрогенизуются в при- [c.269]

    Итак, поскольку алюмосиликаты и цеолиты обладают кислотными участками структуры, их участие в ускорении ионных реакций понять легко. Однако явление взаимосвязи кислотности катализатора с его способностью ускорять ионные реакции в ходе процессов гидрогенизации много сложнее. Нужно принять во внимание, во-первых, что некоторые катализаторы, достаточно хорошо ускоряющие ионные реакции изомеризации и расщепления, не содержат в своем составе алюмосиликатов или цеолитов (например, WS2, МоЗа и др.). Во-вторых, как отмечалось уже на ранних ступенях разработки катализаторов гидрокрекинга активные катализаторы должны обладать не только кислотной, но и гидрирующей активностями, т. е. обе активности должны быть выше определенного критического уровня. Весьма активные алюмосиликаты, использованные в качестве носителей, давали недостаточно активные катализаторы гидрокрекинга (Р1 на А12О3 4- ЗЮз) при малых содержаниях платины с увеличением содержания платины их активность росла, но только до определенного предела. [c.125]

    Особенно высокой селективностью характеризуются рениевые катализаторы, главным образом в реакдия-х гидрогенизации. Кроме того, они необычайно устовчивы к таким каталлтическим ядам, как сера, азот и фосфор. По активности рений превосходит вольфрам, молибден, кобальт и другие металлы и приближается к никелю и платине. Рениевые катализаторы находят применение в современных п )рцессах гидрокрекинга, риформинга, в процессах очистки твердых парафинов и в ряде других процессов. [c.235]

    Платина находит широкое применение. Из нее готовят разнообразные лабораторные аппаратуру и принадлежности (тигли, вьшаривательные чашки, электроды для электроанализа, шпатели и т. д.), термопары, неокисляющиеся контакты (из сплавов платины с другими благородными металлами, например иридием). Платиновая проволока идет иа обмотку электрических печей. В ювелирном деле значительные количества платины расходуют на изготовление украшений, а также для закрепления в них драгоценных камней. Из платины изготовляют различные предметы хирургического инструментария. Много металла потребляется на изготовление контактных масс (платина катализирует разнообразные химические процессы гидрогенизация органических веществ, окисление ЗОг в сернокислотном производстве, окисление ЫП — в азотной промышленности и т. д.). [c.554]

    Платина в чистом виде применяется для изготовления химической посуды и отдельных частей аппаратуры химических заводов. Из платины изготовляют электроды. В электротехнике из платины изготовляют нагревательные обмотки электрических печей и приборов, служащих для измерения высоких температур (термометров сопротивления и термопар). Весьма важное применение она находит в качестве катализатора при различных производственных процессах химической промышленности (например, при получении серного ангидрида, при гидрогенизации жиров и пр.). Платина используется в ювелирном деле и для изготовления квронок и литых зубов. При этом пользуются как чистой платиной, так и различными сплавами ее с другими благородными и неблагородными металлами. [c.387]

    При гидрировании ряда алкенов С2Н4—С5Н10 на разведенных елоях платины начиная с амилена скорость гидрирования заметно снижается, а максимум активности смещается в сторону более концентрированных слоев, т. е. с амилена начинается явное услож-1 ение активного центра. Так, от этилена к амилену константа гидрогенизации г падает, а число атомов в ансамбле растет  [c.112]

    В присутствии порошкообразной платины или палл адия эта реакция проходит и при обыкновенной температуре. Реакция присоединения водорода к непредельным соединениям йазывает-ся гидрированием или гидрогенизацией. < [c.78]

    Вторым после Дебуса, называют его, например, А. Митташ и Э. Тейс , но в их изложении опыт с нитрофенолом проведен якобы с платиновой чернью и не отмечено, что в жидкой фазе. К. Эллис почти стер имя Зайцева говорит только об его опыте восстановления нитробензола над палладием и над платиной. П. Сабатье не называет М. М. Зайцева ни в своих ранних работах, ни в монографии Говоря в ней о палладии, он отметил приоритет Зайцева (не сказав которого) в каталитическом превращении нитробензола в анилин ( 536). Ссылка сделана лишь на предварительное сообщение Кольбе, речь только об опыте в газовой фазе. Опыт Зайцева с нитрофенолом пропущен. Митташ и Тейс указывают дату смерти не М. М., а А. М. Зайцева, Эллис и еще некоторые авторы " совсем не различают их. Когда же например, Геллер пишет о применении палладиевого катализатора по Зайцеву , то он имеет в виду только Миколу Зайцева (США), сообщавшего в 1958—1960 гг. о своих опытах по гидрогенизации растительных масел с помощью палладия, осажденного на угольном порошке. [c.398]

    К- Эллис. Гидрогенизация органич. соединений, вып. I, Л,, 1934, 2531, 700 (Ниже цит. Эллис, вып. I). О двух катализаторах пишут также яекоторые советские авторы. Однако единственный опыт М. М. Зайцева с платиной был неудачным. [c.427]


Смотреть страницы где упоминается термин Платина гидрогенизации: [c.268]    [c.15]    [c.239]    [c.239]    [c.242]    [c.246]    [c.249]    [c.254]    [c.257]    [c.263]    [c.216]    [c.486]    [c.88]    [c.51]    [c.511]    [c.406]    [c.182]    [c.349]    [c.161]   
Катализ и ингибирование химических реакций (1966) -- [ c.38 , c.152 , c.153 , c.262 , c.276 ]




ПОИСК







© 2025 chem21.info Реклама на сайте