Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность в реакции гидрокрекинга парафинов

    Кислотной функцией обладает носитель катализатора — окись алюминия. Кислотными свойствами катализатора определяется его крекирующая и изомеризующая активность. Эти свойства особенно важны при переработке сырья с большим содержанием парафиновых углеводородов (инициировании реакций гидрокрекинга и изомеризации парафинов, а также гидроизомеризации пятичленных нафтенов в шестичленные, что при последующем их дегидрировании приводит к образованию ароматических углеводородов). Для усиления кислотной функции катализатора в его состав вводят галоген. В последнее время с этой целью чаще применяют хлор, раньше и изредка сейчас —фтор, который также стабилизирует высокую дисперсность платины, образуя комплексы с ней и окисью алюминия. Преимущества хлора в том, что он в меньшей мере способствует реакциям крекинга это особенно важно в условиях жесткого режима. [c.139]


    Кислотой функцией обладает носитель катализатора — окись алюминия, промотированная галогеном — фтором или хлором . Иногда для увеличения кислотной функции в качестве носителя применяют алюмосиликат. Активность катализатора, обусловленная кислотностью, вызывает реакции гидрокрекинга парафиновых углеводородов, а также изомеризации парафиновых и пятичленных нафтеновых углеводородов с переводом последних в шестичленные (при дегидрировании). При катализаторе, сочетающем обе функции (его обычно называют бифункциональным), осуществляются такие важные реакции, как дегидроциклизация, особенно необходимая при переработке сырья с высоким содержанием парафиновых углеводородов. Обе функции катализатора способствуют протеканию не только желательных реакций, но и побочных (крекинга, полимеризации и образования кокса, которое наблюдается при повышении температуры и особенно при снижении давления в системе). Вот почему для достижения оптимальных результатов при выбранных условиях процесса необходимо найти нужное сочетание свойств бифункционального катализатора. [c.166]

    Кислотными свойствами катализатора определяется его крекирующая и изомеризующая активность. Кислотность особенно важна при переработке сырья с высоким содержанием парафиновых углеводородов для инициирования реакций гидрокрекинга и изомеризации парафинов, а также гидроизомеризации пятичленных нафтенов в шестичленные, при последующем дегидрировании которых образуются ароматические углеводороды. [c.28]

    Кислотной функцией обладает носитель катализатора - окись алюминия. Кислотными свойствами катализатора определяется его крекирующая и изомеризующая активность. Кислотность особенно важна при переработке сырья с высоким содержанием парафиновых углеводородов для инициирования реакций гидрокрекинга и изомеризации парафинов, а также гидроизомеризации пятичленных нафтенов в шестичленные, при последующем дегидрировании которых образуются ароматические углеводороды. Для усиления кислотной функции катализатора в его состав вводят галоген. [c.25]

    С помощью катализаторов риформинга получают следующие продукты бензины с высоким октановым числом, ароматические углеводороды (С — g), сжиженный нефтяной газ, легкие индивидуальные углеводороды (Сз, С4) и водород. Поэтому катализаторы должны обладать полифункциональными свойствами расщепляющими (гидрокрекинг парафиновых углеводородов) изомеризующими (изомеризация парафиновых углеводородов) они должны также способствовать дегидрогенизации (нафтеновых углеводородов), дегидроциклизации (парафиновых углеводородов) и т. д. Катализатор включает два основных компонента матрицу — носитель (необходимую главным образом для расщепления) и гидрирующий металл, вызывающий реакции гидрирования, дегидрирования и дегидроизомеризации. В группу активных носителей входят окись алюминия, аморфный и кристаллический (цеолит) алюмосиликаты, и др. В качестве гидрирующих компонентов используют в основном металлы VI и VIH групп периодической системы элементов. [c.137]


    Работами ряда авторов было показано, что основной реакцией высококипящих парафиновых углеводородов в условиях гидрокрекинга над бифункциональными катализаторами является изомеризация, получающая максимальное развитие при 430—440 °С [51]. Характерно, что основное количество изомерных углеводородов сосредоточено во фракциях изомеризата, выкипающих в тех же пределах, что и исходные углеводороды. С увеличением температуры гидрокрекинга возрастает степень разветвленности продуктов реакции. На скорость реакций парафиновых углеводородов, протекающих в условиях гидрокрекинга, существенное влияние оказывает гидрирующая и расщепляющая активность катализаторов. Следует учитывать, что реакции изомеризации и расщепления парафиновых углеводородов протекают без увеличения объема, т. е. давление не оказывает влияния на термодинамическое равнове-сиё. Работами советских и зарубежных ученых установлено, что при атмосферном давлении водорода реакции изомеризации парафиновых углеводородов идут с малой скоростью, а в среде азота полностью подавляются. С повышением давления водорода ско- [c.314]

    При гидрокрекинге парафиновых углеводородов в присутствии катализаторов кислотного типа образуется много легких, интенсивно изомеризованных углеводородов как правило, образуется избыток углеводородов разветвленного строения по сравнению с равновесным. Очевидно, образующиеся в ходе процесса олефины разветвленного строения в присутствии водорода тотчас насыщаются и уже не могут вступать в дальнейшие реакции изомеризации. Менее активные катализаторы (молибденовые, вольфрамовые) дают более высокое отношение легких изопарафинов к н-парафинам по сравнению с более активным платиновым катализатором, который вызывает повторную изомеризацию 1-парафинов в н-парафины. Углеводороды с четвертичными атомами углерода практически отсутствуют. Этот факт указывает на ионный характер изомеризации, так как образование четвертичного углеродного атома требует энергетически невыгодного перехода третичного иона во вторичный. [c.11]

    Нафтеновые углеводороды с длинными алкильными цепями при гидрокрекинге на катализаторах с высокой кислотной активностью подвергаются изомеризации и распаду цепей, как и парафиновые углеводороды. Расщепление кольца происходит в небольшой степени. Интенсивно протекают реакции изомеризации шестичленных нафтенов в пятичленные. Бициклические нафтены превращаются преимущественно в моноциклические с высоким выходом производных циклопентана. На катализаторах с низкой кислотной активностью протекает в основном гидрогенолиз — расщепление кольца с последующим насыщением образовавшегося углеводорода (табл. 109). [c.241]

    При изучении влияния аммиака и диэтаноламина на конверсию н. гептана, н. нонана и метилциклогексана на АПК установлено, что наличие 0,2% азота в виде диэтаноламина почти не влияет на дегидрирование метилциклогексана при 482 °С и давлении 1,4 МПа [15]. Гидрокрекинг, изомеризация и дегидроциклизация нормальных парафиновых углеводородов подавляются в значительной степени. Октановые числа дебутанизированных продуктов превращения н. гептана и н. октана снижаются от 95 и 99 пунктов до 52,3 и 59,6. Авторы полагают, что в этих реакциях участвуют кислотные центры катализатора, так как аммиак в первую очередь адсорбируется на них. Активность катализатора легко восстанавливается при пропускании чистых углеводородов [15,402]. [c.152]

    На скорость основных реакций парафиновых углеводородов, протекающих в условиях гидрокрекинга, существенное влияние оказывает гидрирующая и расщепляющая активность катализаторов. [c.32]

    Образовавшийся после дегидрогенизации нафтеновых углеводородов водород почти полностью сорбируется и исцользуется в реакциях гидрокрекинга парафиновых углеводородов таким образом, устанавливается определенное равновесие, при котором отложение кокса на катализаторе практически равно нулю. Значит платиновый катализатор становится ауторегенератором (его активность свыше 13 ООО ч). [c.256]

    Первые промышленные катализаторы — оксид хрома, несколько позднее — окспд молибдена, нанесенные на оксид алюминия. На использовании оксидномолибденового катализатора был основан промышленный процесс гидроформинга, существовавший до бО-х гг. Оксидномолибденовый катализатор, способствуя достаточно глубокому превращению нафтенов, был малоактивен в реакциях дегидроциклизации парафиновых углеводородов. Из-за недостаточно высокой активности катализатора приходилось повышать температуру процесса, которая достигала 520—540 °С. При высоких же температурах протекали нежелательные реакции гидрокрекинга, сопровождающиеся избыточным газообразованием. [c.40]

    В ППО Леннефтехим был разработан металлоцеолитный катализатор, обладающий высокой активностью в реакциях ароматизации углеводородов и гидрокрекинга нормальных парафиновых углеводородов. При переработке бензинов на металлоцеолитном катализаторе наблюдается высокая селективность превращения нафтеновых углеводородов в ароматические и процесса гидрокрекинга парафиновых углеводородов нормального строения, а реакции гидролиза пятичленных нафтеновых углеводородов и гидрокрекинга изопарафиновых углеводородов, характерные для традиционных катализаторов риформинга на основе оксида алюминия, протекают весьма слабо [121-123,128,129]. [c.28]


    Металлоцеолитный катализатор обладающий высокой активностью в реакциях ароматизации 1 леводородов, впервые был разработан в НПО Леннефтехим [121-124]. При переработке бензинов на этом катализаторе наблюдается высокая селективность превращения нафтеновых углеводородов в ароматические и гидрокрекинг парафиновых углеводородов нормальною строения, а реакции гидрогенолиза пятичленных нафтеновых углеводородов и гидрокрекинга изопарафиновых углеводородов протекает весьма слабо. [c.112]

    Эта реакция нромотируется обеими функциями катализаторов риформинга, т. е. гидрирующей и кислотной. Это означает, что в данном случае применим ионный механизм, предложенный для реакций крекинга [17, 36] но здесь крекинг сопровождается мгновенным насыщением осколков, ведущим к образованию парафиновых углеводородов. Следовательно, при реакциях гидрокрекинга может и фактически протекает скелетная перегруппировка. Например, было показано [24], что в качестве основных продуктов гидрокрекинга к-гептана образуются пропан и изобутан наряду с меньшими количествами других продуктов и, разумеется, сравнительно глубокой изомеризацией исходного к-гептана. Работы по изучению изомеризации различных парафиновых углеводородов на никель-алюмосиликатном катализаторе [И ] обнаружили высокую степень превращения в ппзкокипящие парафиновые углеводороды наряду с изомеризацией в изомеры разветвленного строения. Например, к-октап при 380°, давлении 25 ат, объемной скорости (по жидкому сырью) 1 час и молярном отношении водород углеводород 4 1 почти полностью превращается в продукт, состоящий главным образом из пропана, изо- и к-пентана и смешанных бутанов. При более низкой температуре наблюдается ослабление реакции крекинга и более глубокая изомеризация в изомерные октаны. Следует отметить, что состав и метод приготовления катализатора оказывают, сильное влияние на протекание реакции гидрокрекинга этим путем можно достигнуть образования более крупных осколков. Если гидрирующая активность катализатора значительно преобладает над его кислотной активностью, то протекает реакция деметилирования, которая представляет особый случай гидрокре- [c.210]

    Реакция дегидрогенизации является наиболее важной при каталитическом риформинге лигроинов по следугош,им двум причинам. Во-первых, дегидрогенизация нафтеновых углеводородов в ароматические — основная реакция, сопровождающаяся повышением октанового числа продуктов реакции. Во-вторых, дегидрогенизация парафиновых и циклона-рафиновых углеводородов сопровождается образованием соответствующих олефиновых углеводородов, активных промежуточных соединений последующих реакций изомеризации, циклизации и катализируемых кислотами реакций гидрокрекинга. [c.469]

    Кислотной функцией обладает носитель катализатора — окись-алюминия, актив рованная добавлением галоида — фтора или хлора . Иногда для увеличения кислотной функции в качестве носителя применяюг алюмосиликат. Активность катализатора, обусловленная кислотностью, вызывает реакции гидрокрекинга парафинО вых углеводородов, а также изомеризации парафиновых и пятичленных нафтеновых углеводородов с переводом последних в шести-членные (при дегидрировании). [c.183]

    Циклопарафиновые углеводороды. Циклопарафины с длинными алкильными цепями подвергаются при гидрокрекинге на катализаторах с высокой кислотной активностью распаду цепей по реакциям такого же типа, как парафиновые углеводороды. Циклопарафиновые кольца устойчивы, и гидрогенолиз колец протекает в малой степени. Циклогексаны Сю и выше распадаются с образованием в основном изобутана и циклопарафина, имеющего на 4 атома углерода меньше, чем исходный. Образующиеся циклопарафины представлены в основном циклопентанамн. При невысоких температурах эта реакция проходит с довольно высокой селективностью (табл. 11.2). [c.279]

    В настоящее время в нефтеперерабатывающей промышленности наиболее развитых стран ведущее место занимают процессы каталитического крекинга, каталитического риформинга и гидрогенизационные процессы, в первую очередь гидроочистка и гидрокрекинг. С их помощью получают различные виды высококачественного топлива и обеспечивают химическую промышленность рядом важнейших видов сырья — ароматическими углеводородами и парафиновыми углеводородами С4—С5. В химическом отношении это весьма сложные, но вместе с тем имеющие много общего процессы, в которых одновременно протекает большое количество реакций, связанных с разрывом связей С—С и С—Н, образованием новых связей С—С и С—Н, изменением скелета реагирующих молекул и т. д. Процессы осуществляются под давлением и при рециркуляции водорода. Если в процессе гидрокрекинга водород является одним из веществ, активно участвующих в реакциях, то при риформннге водород — это продукт процесса. Однако в обоих процессах водород выполняет и одну общую важную функцию — поддерживает высокую активность катализатора, предотвращая быстрое накопление на его поверхности продуктов уплотнен.чя — кокса. [c.134]

    Раньше такие процессы рекомендовали проводить под давлением до 25 МПа и выше. Затем в результате дополнительных исследований и применения более активных катализаторов удалось получать хорошие результаты при давлении 5—10 МПа. Одной из первых таких работ было исследование В. И. Каржева с сотр. [16]. Исследуя превращения в условиях гидрокрекинга высококипящих парафиновых углеводородов (н. к. — 358 °С, 95% выкипает при 493 °С) на алюмоплатиновом катализаторе при 1 —10 МПа и 430 °С, они показали, что реакции расщепления и изомеризации протекают параллельно, но с различными скоростями. С наибольшей скоростью проходят реакции изомеризации. При давлении водорода до 5 МПа увеличиваются скорости обеих реакций, а при дальнейшем повышении они тормозятся, причем реакции изомеризации — более интенсивно. [c.286]

    Процесс осутцествляется в три ступени реакторы I и II ступени включены последовательно, а два реактора Ш ступени включены параллельно, один из которых может служить резервным. В первых двух ступенях протекают в основном реакции дегидрирования нафтеновых углеводородов и изомеризации парафиновых углеводородов. На последней ступени в более жестких условиях интенсифицируются реакции дегидроциклизации парафинов и гидрокрекинга, сопровождаемые отложением кокса на катализаторе. Для увеличения длительности рабочего цикла предусмотрена возможность отключения одного параллельно работающего реактора Ш ступени с целью проведения в нем регенерации катализатора без прекращения эксплуатации всей установки. При снижении же активности катализатора в реакторах I и II ступени прекращается подача сырья и регенерацию катализатора проводят во всех реакторах одновременно. Таким образом, указанная схема риформинга является промежуточной между технологиями с регенерацией катализатора во всех реакторах установки и регенерацией катализатора в резервном реакторе (процесс ультраформинга). [c.62]

    Активность. Для того, чтобы биметаллические системы можно было использовать для улучшения каталитической активности, в первую очередь необходимо оценить данные об их селективности. В каком-либо заданном процессе может проис-лодить несколько реакций, но обычно необходимо увеличить выход только одного из конечных продуктов до максимума. Например, в каталитическом риформинге или -гидрокрекинге разветвленные парафиновые и ароматические углеводороды являются предпочтительными продуктами, а выход легких газов, таких как метан и этилен, необходимо уменьшить. Использование биметаллических катализаторов приводит к увеличению селективности ценных жидких продуктов в таких процессах. [c.24]

    Крекинг и изомеризация парафиновых углеводородов являются важнейшими промышленными процессами, но механизмы реакций, составляющих основу этих процессов, изучены явно недостаточно. Наиболее просто было бы предположить, что определенные активные центры цеолитов способны непосредственно разрывать связи С —Н или С —С, тем более, что в гомогенных системах подобные процессы наблюдаются. Однако до сих пор мы не располагаем надежными данными о том, что такие процессы могут конкурировать с процессом образования ионов карбония путем протонирования олефинов и последующего отрыва гидрид иона. Детальные исследования состава продуктов крекинга, в особенности продуктов гидрокрекинга крупных органических молекул, внесли определенную ясность в понимание последовательности реакций превращения углеводородов путем 1,2-сдвигов алкильных групп или гидрид-ионов, образования протонированных циклопропанов и р-расщепления. Наиболее подробно реакции крекинга изучены на примере парафиновых углеводородов С4 и С 5, хотя на самом деле эти молекулы занимают особое положение, так как у них прямое расщепление С — С-связей неизбежно должно привести к образованию первичных ионов карбония, что связано с преодолением высокого энергетического барьера. Наконец, можно отметить, что для крекинга на цеолитах очень характерна реакция перераспределения водорода, которая по всей вероятности протекает путем гидридного переноса. В результате олефины и нафтены, образующиеся при первичном креюшге, превращаются в более устойчивые к крекингу парафины [c.118]

    Влияние избыточного количества органических соединений хлора обратно воздействию воды, так как в процессе риформинга они превращаются в хлористый водород и повышают кислотную функцию АПК. При высокой кислотной активности катализатора парафиновые углеводороды изомеризуются настолько быстро, что уже в начальных стадиях процесса достигается равновесие н.парафиныч=ьизопарафины и далее идет интенсивный гидрокрекинг [13]. Концентрация водорода в циркулирующем газе снижается, что приводит к быстрому закоксовыванию платинового катализатора. Выход жидких продуктов реакции уменьшается. Кроме промотиро-вания гидрокрекинга, органические хлориды способствуют ускорению изомеризации циклогексанов в циклопентаны и снижению их дегидрирования в ароматические углеводороды. Это является результатом нарушения соотношения между металлической и кислотной функциями АПК [256]. Снижение избытка хлора на катализаторе достигается дозированной подачей небольших количеств воды в систему. [c.103]

    Состав продуктов гидрокрекинга зависит от гидрирующей активности катализатора например, первичной реакцией парафиновых углеводородов является каталитический крекинг с последующим гидрированием, при котором образуются более стабильные ннзкокипящие парафиновые углеводороды. Если катализатор обладает высокой гидрирующей способностью, то образовавшиеся ненасыщенные углеводороды быстро гид- [c.6]


Смотреть страницы где упоминается термин Активность в реакции гидрокрекинга парафинов: [c.112]    [c.137]    [c.134]    [c.172]    [c.317]    [c.140]    [c.211]   
Смотреть главы в:

Катализ полифункциональные катализаторы и сложные реакции -> Активность в реакции гидрокрекинга парафинов




ПОИСК





Смотрите так же термины и статьи:

Гидрокрекинг



© 2025 chem21.info Реклама на сайте