Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процесс количества движения

    Тройная аналогия между переносом количества движения (импульса), тепла и вещества. Теоретическим анализом и многочисленными экспериментальными исследованиями установлено, что между механизмами переноса механической энергии, тепла и массы в определенных условиях существует приближенная аналогия. Известно, например, что в ядре турбулентного потока вследствие интенсивного перемешивания частиц происходит выравнивание их скоростей, а в процессах тепло- и массопереноса — выравнивание соответственно температур и концентраций. В пределах же пограничного слоя наблюдается резкое падение скоростей, температур и концентраций вследствие пренебрежимо малого действия турбулентных пульсаций. [c.152]


    При изобарном процессе количество движения смеси на выходе из камеры смешения равно сумме количеств движения поступающих в камеру смешения потоков  [c.31]

    Материал книги охватывает важнейшие проблемы современной инженерной химии приложение законов физической химии к решению инженерные задач, явления переноса массы, энергии и количества движения, вопросы теории подобия, теорию химических реакторов, проблемы нестационарные процессов. Специальные главы посвящены методам математической статистики и вопросам оптимизации химико-технологических процессов. [c.5]

    Все три процесса переноса энергии, компонента и количества движения (импульса) протекают во времени, причем каждый имеет собственную кинетику. Независимо от формы кинетических законов в уравнении процесса переноса пе появляется новых переменных, не являющихся функцией основных величин, характеризующих состояние системы и, V, Скорость приращения энтропии, например, согласно уравнению (3-20), при 7 = О и = О выразится следующим образом  [c.31]

    Простым мы будем называть элемент процесса, если потоки перед входом в него смешиваются не более одного раза (дистилляционная колонна с большим числом тарелок не может считаться простым элементом, так как потоки па каждой тарелке смешиваются заново). Элемент процесса будем ограничивать изолированными стенками, через которые не проходят потоки компонента, теплоты и количества движения (импульса). [c.37]

    Стационарным мы будем называть элемент процесса, если в любой его точке величины состояния проходящего через него потока компонента не изменяются во времени. Это условие распространяется также на вход и выход из элемента процесса. Как известно, для установления стационарного режима требуется, чтобы содержание компонентов, энергии и количества движения (импульса) в элементе процесса [c.37]

    Использование средней длины свободного пробега (1,2) вместо i для смеси возможно при допущении, что каждый газ препятствует диффузии только другого газа. Это достаточно логично, если рассмотреть действительный процесс столкновений. Когда сталкиваются две одинаковые молекулы, они просто обмениваются головными компонентами количества движения, и это никак не влияет на общую компоненту количества движения частиц в направлении потока. Таким образом, подобные столкновения в нервом приближении не будут влиять на потоки молекул и, следовательно, на диф- [c.168]


    Теперь необходимо рассмотреть, какие виды подобия, кроме геометрического, встречаются в системах, используемых в химической технологии. В гл. 6 подробно рассматривались уравнения, описываюш ие элемент процесса, причем было получено три уравнения для потока компонента, теплоты (энтальпии) и импульса (количества движения). Каждое такое уравнение имело пять составляющих I — для конвективного потока II — для основного потока III — для переходящего потока IV — для источников V — для локальных изменений. В случае стационарных установившихся систем составляющая V равна нулю. В дальнейшем ограничимся рассмотрением только тех систем, в которых принимаются во внимание лишь четыре составляющие (с I по IV). Полученные в предыдущей главе уравнения (6-49) и (6-50) размерно однородны. Это значит, что размерности всех членов этих уравнений одинаковы и принадлежат к одной системе единиц измерения. Если мы рассмотрим не отдельные составляющие указанных уравнений, а их значения, отнесенные к какой-либо одной выбранной составляющей, то получим аналогичные (7-5) безразмерные величины, которые будут представлять собой отношения нескольких параметров. [c.78]

    Представим себе два последовательно включенных элемента процесса, причем потоки компонентов, теплоты (энтальпии) и импульса (количества движения) переходят из одного элемента в другой (рис. 13-1). Можно считать, что число степеней свободы элемента II обусловливается потоком, поступившим из элемента I. Из этого [c.269]

    Чтобы проанализировать процесс, нужно постараться вычислить скорость, с которой газ может передавать количество движения. Положим, что поверхность шероховатая и поток ньютоновский (постоянный градиент скорости). Действующая вязкая сила будет одинаковой во всем объеме системы и будет равна скорости, с которой количество движения переносится через единицу поверхности. Рассмотрим произвольную плоскость, параллельную двум данным плоскостям (рис. 111.2). [c.157]

    Когда плотность газа между двумя пластинками с различными температурами такова, что средняя длина свободного пробега молекул газа значительно превышает расстояние между пластинками, то перенос теплоты происходит непосредственно путем соударений молекул с пластинами. Этот процесс можно проанализировать по аналогии с процессом переноса количества движения при малых плотностях. [c.164]

    Хорошо известно, что процессы передачи тепла, массы и количества движения связаны между собой. В некоторых случаях найдена корреляция между обычными безразмерными группами и соответствующими факторами массопередачи (j ) и теплопередачи (/д), которые определяются следующим образом  [c.245]

    Применяя законы сохранения массы, количества движения и энергии к химическим процессам, можно получить ряд уравнений связи между соответствующими переменными величинами, которые могут быть сгруппированы в различные безразмерные комплексы. Для упрощения записи ограничимся реакцией первого порядка в газовой фазе, например реакцией [c.342]

    Физическими процессами, определяющими работу контактного аппарата, являются обмен количеством движения, массо- и теплообмен между потоком и частицами катализатора, а также между потоком и стенкой реактора. [c.53]

    Для альпинистов, которые относятся к своему занятию серьезно, одной из самых опасных операций является динамический траверз . Так называется преодоление труднопроходимого участка пути, где альпинист каждое мгновение находится в неустойчивом положении и удерживается от падения только благодаря наличию собственного импульса- (количества движения). В некотором смысле каждый живой организм постоянно совершает динамический траверз. Один из наиболее общих научных законов, второй закон термодинамики, утверждает, что любой процесс, протекаю-шлй в замкнутой системе (каковой является исследуемый объект плюс все 11  [c.323]

    Книга известных американских ученых является фундаментальным руководством, в котором изложены процессы переноса количества движения (течение вязкой жидкости), энергии (тепловой поток) и массы (поток смеси реагентов). Книга снабжена большим числом примеров, задач и обширной библиографией. [c.727]

    Выбор типа и количества сжигательных устройств, их размещение, организация процесса горения, движение продуктов горения являются основными и наиболее ответственными задачами, которые необходимо решать при проектировании печей и других огневых [c.339]

    Гидромеханические (гидродинамические) процессы состоят в переносе импульса (количества движения). Движущей силой процесса является разность скоростей в разных точках пространства перенос (поток) импульса осуществляется в направлении убывания скорости. К гидромеханическим (гидродинамическим) процессам отпосятся движение потоков газов и жидкостей в аппаратах п трубах, движение частиц в среде под действием силы тяжести и движение потоков жидкости через слой, образованный твердыми частицами. [c.15]


    Уравнение конвективной диффузии и по форме сходно с уравнением гидродинамики Навье — Стокса. Последнее выражает баланс количества движения, переносимого в несущей фазе, в то время как первое —баланс вещества. Поэтому вполне допустимо использование тех же методов решения, какие применяются к уравнению Навье — Стокса, в частности, метода САР по малому параметру. Пусть процесс диффузии будет установившимся. Составим отношение членов из уравнения (3.6), которое по порядку величины равно [c.251]

    Самые различные процессы возникновения и поглощения электромагнитных колебаний обладают квантовой природой, т. е. при этих процессах энергия выделяется или поглощается только целыми порциями (квантами), пропорциональными частоте колебаний. Особенно плодотворно квантовые представления о природе излучения были применены к теории атома. Бор допустил, что из бесчисленного множества возможных орбит вращения электронов только некоторые отвечают стационарному состоянию атома. Приняв, что в атоме водорода электрон вращается по круговым орбитам, он постулировал, что устойчивыми из этих орбит могут быть только те, для которых момент количества движения электрона по [c.29]

    Рис. 103 иллюстрирует взаимосвязь между гидравлическим сопротивлением насадки и ее разделяющей способностью. Линейная зависимость числа теоретических ступеней, приходящихся на 1 м рабочей высоты колонны, Пуд для насадки из спиралей (см. табл. 29) от гидравлического сопротивления при турбулентном движении паров показывает, что во всем интервале нагрузок для турбулентного режима между переносом количества движения, тепла и вещества в процессе ректификации существует аналогия. Механизм массообмена при этом остается неизменным. Выше линии изломов с—с (см. рис. 103) пар в виде пузырей барботирует через накопившийся слой жидкости, причем процесс массообмена протекает уже по другому закону [203, 206, 208]. [c.166]

    Пары первичных смол содержат много компонентов, обладающих очень высокой точкой кипения эти компоненты конденсируются вокруг более холодных зерен угля, которые им встречаются в непосредственной близости от пластического слоя. Вслед за тем температура зоны, в которой сконденсировались смолы, повышается вследствие передачи тепла от стенки камеры. Сконденсировавшаяся смола начинает частично испаряться, слегка удаляясь внутрь печи, и снова конденсируется вместе со вновь образовавшейся смолой. Следовательно, пластический слой в процессе своего движения толкает перед собой некоторое количество первичной смолы. Когда уголь доводится до температуры плавления, в нем содержатся тяжелые фракции еще не испарившейся смолы, и это изменяет его поведение по сравнению с углем, не содержащим этих фракций и находящимся в условиях равномерного нагрева. [c.144]

    Критерий прандтля представляет собой отношение количества движения, переносимого за счет внутреннего трения, к количеству тепла, передаваемого теплопроводностью. В средах, для которых критерий Прандтля имеет большую величину (например, в мазуте, минеральных маслах и т. п.), процессы переноса за счет внутреннего трения играют более существенную роль по сравнению с теплопроводностью среды. Вещества, в которых критерий Прандтля имеет малую величину, хорошо передают тепло теплопроводностью. Для газов, в которых критерий Прандтля близок к единице, оба процесса переноса сопоставимы по величине. Перенос тепла в неподвижной среде свободной конвекцией характеризуется критерием Грасгофа [c.163]

    Если принять, что процесс протекает при постоянной температуре, а частицы дисперсной фазы имеют одинаковый размер, то в общем виде уравнения сохранения количества движения и массы запишутся в виде  [c.13]

    Экспериментальной проверке подвергались и имеющиеся рекомендации к выбору целесообразных длин смесительных труб. Для иллюстрации обстановки процесса перестройки скоростных полей в эжекторе построены кривые изменения статических напоров по длине смесительной трубы, осредненные по поперечным сечениям. На основе обработки эпюр скоростей воздуха в поперечных сечениях смесительной трубы эжекторов получены вероятные величины поправочных коэффициентов на скоростное давление и на количество движения. [c.112]

    Идеальным было бы такое изучение процесса, при котором можщ) проектировать промышленную установку в любом масштабе на основе теоретических расчетов с использованием данных, полученных при лабораторных исследованиях. Развивающееся в последние годы изучение механизмов процессов переноса количества движения, массы и теплоты, а также кинетики химических превращений позволило разработать расчетные методы масштабирования (методы математического моделирования). [c.441]

    Как уже указывалось, для того чтобы процесс предиссоциации был возможен, необходимо соблюдение правил отбора. Эти правила могут быть нарушены путем помещения молекулы в электрическое или магнитное поле. Так, например, флюоресценция паров иода, возбужденных зеленой ртутной линией, может быть нотушена достаточно интенсивным магнитным полем. Как показывают опыты, а также характер потенциальных кривых, при этом происходит диссоциация молекулы иода на атомы. При отсутствии магнитного поля этот процесс запрещен правилами отбора. При наложении магнитного ноля в данном случае снимается правило, требующее постоянства момента количества движения (Д/=0), и вследствие этого становится возможной предиссоциация. Такое явление получило название магнитного тушения флюоресценции. [c.70]

    Как уже упоминалось при рассмотрении балансов, основой процессов, протекающих в контактных реакторах, является обмен массой, энергией и количеством движения. По мнению Kpeвeлeнa при таком обмене важны следующие факторы  [c.152]

    Критерии подобия являются основой для масштабного перехода. Критерии часто вступают в противоречие друг с другом. При рассмотрении процессов, протекающих в химических реакторах, важную роль играет понятие сопротивления, определяемое как отношение некоторой движущей силы к переносимым за едииицу времени количеству движения, массе, теплу или к количеству превратившегося химического вещества. При увеличении масштаба относительные величины соответствующих сопротивлений меняются. [c.230]

    В целом процесс разделения газовой смеси в мембранном элементе описывается системой дифференциальных уравнений баланса массы, количеств движения и энергии, записанных для каждой области мембранного элемента — напорного и дренажного каналов, собственно мембраны и пористой подложки. Начальные и граничные условия процессов в каждой области взаимосвязаны, поэтому расчет модуля представляет сложную сопряженную задачу, которая должна быть решена при соблюдении ряда технологических и энергоэкономических требований. Обычно расчет процесса разделения проводят при допущениях, сильно упрощающих аналитические выкладки или процедуру численного расчета. Иногда это приводит к заметному искажению результатов, особенно при разделении неидеальных га- [c.157]

    Развиваемый в данной миографии системный подход к описанию сложных ФХС открывает путь к созданию Достаточно общего математического описания процессов массовой кристаллизации, учитывающего все основные особенности в тесной взаимосвязи. На этапе качественного анализа структуры ФХС (рассматривая смысловой и количественный аспекты анализа) сформулированы общие уравнения термогидромеханики полидисперсной смеси (уравнения сохранения массы, количества движения, энергии с учетом произвольной функции распределения частиц по размерам, фазовых переходов и поверхностной энергии частиц). Тем самым созданы предпосылки для последовательного и обоснованного учета наиболее существенных явлений и их описаний от первого до пятого уровней в общей иерархической структуре эффектов при построении функционального оператора полидисперсной ФХС произвольного вида. [c.4]

    В ряде случаев для объяснения некоторых особенностей радиационнохимических реакций прибегали к предположению о существенной роли в этих реакциях го])ячих , т. е. обладающих существенной надтепловой кинетической энергией, атомов, играющих, однако, небольшую роль в в радиационно-химических реакциях, что обусловлено 1) упоминавшимся выше нреимущестаеиным характером распада возбужденных многоатомных молекул и иопов, связанным с предшествующим диссоциации распределением энергии по колебательным степеням свободы 2) вытекающей из закона сохранения количества движения обратной пропорциональностью кинетической энергии н])одукта диссоциации его массе (поэтому дискутируют главным образом о горячих атомах водорода) 3) большой скоростью процесса поступательной релаксации (см. 24). [c.195]

    Основываясь на аналогии между процессами переноса количества движения, тепла и массы, можно в определенных условиях приближенно определять коэффициенты теплоотдачи или коэффициенты массоотдачи по опытным данным о трении, либо коэффициенты теплоотдачи по опытным данным о массоотдаче, и наоборот. [c.152]

    Наличие пульсационной скорости в турбулентном ядре потока приводит к интенсификации процессов переноса количества движения, теплоты и вещества. [c.21]

    Заметим, что основные параметры уравнения (3.22) объединены в три безразмерные группы (число Нуссельта Ко1к, число Прандтля Ср 1 к и число Рейнольдса Ь01ц). Из уравнения (3.22) следует, что коэффициент теплоотдачи увеличивается с увеличением числа Рейнольдса несколько медленнее, чем по линейному закону (показатель степени меньше единицы). Это объясняется тем, что поперечные составляющие скорости смещения, обусловленные турбулентностью, увеличиваются с повышением осевой скорости не линейно, а более медленно. Поскольку обмен теплом через пограничный слой зависит от того же самого процесса турбулентного смешения, что и обмен количеством движения, определяющий коэффициент трения, и так как коэффициент трения обратно пропорционален числу Рейнольдса в степени 0,2, можно заключить, что коэффициент теплоотдачи должен увеличиваться пропорционально числу Рейнольдса в степени 0,8 23 . [c.57]

    Отдельный круг вопросов - связь теплопроводности и вязкости. Если такая зависимость существует, то в совокушюети с (1У.1.2) получается взаимосвязь всех трех кинетических коэффициентов, характеристик процессов переноса массы, количества движения и энергии. [c.70]

    Гудив распространил на псевдопластичность концепцию о том, что складываются два независимых эффекта. Он полагал, что на режим течения концентрированных эмульсий и дисперсий влияют ньютоновский эффект, при котором сдвигающая сила пропорциональна скорости сдвига, и тиксотропный эффект, при котором сдвигающая сила постоянна независимо от скорости сдвига. Между частицами, находяпщмися в контакте, устанавливаются связи во время сдвига эти связи растягиваются, искривляются, рвутся и восстанавливаются. Этот процесс сопровождается переносом количества движения (кинетической энергии) от движущегося слоя к соседнему более медленно движущемуся слою [c.227]

    Современные теории циклонирования изложены во многих работах [13]. Общая схема процессов представляется в следующем виде. Запыленный газ входит в циклон через патрубок, расположенный тангенциально к цилиндрической пылеосадительной камере и движется спирально вниз по стенке конуса, а затем вверх, в выходную трубу (рис. 1.1). При этом считается, что диаметр восходящего по спирали потока (ядро вихря) примерно равен диаметру выхлопной трубы. На входе в циклон газовый поток в кольцевом пространстве между стенкой корпуса и выхлопной трубой движется с ускорением. Кинетическая энергия потока диссипиру-ется в процессе обмена количеств движения с обратными потоками, возникающими на фанице застойных зон. [c.9]

    Исходя из аналогии между процессами переноса массы, тепла и количества движения, можно в определе1Н1Ых случаях приближенно определять скорость массоотдачи по данным [c.404]


Смотреть страницы где упоминается термин Процесс количества движения: [c.31]    [c.33]    [c.38]    [c.206]    [c.158]    [c.163]    [c.226]    [c.132]    [c.40]    [c.50]    [c.159]   
Свойства газов и жидкостей (1966) -- [ c.340 , c.413 ]




ПОИСК





Смотрите так же термины и статьи:

Аналогия в процессах конвективного переноса количества движения и теплоты, а также вещества

Аналогия процессов переноса количества движения, энергии и массы

Количество движения

Количество движения, перенос аналогии с другими процессами переноса

Коэффициент массоотдачи. Аналогия процессов переноса массы, теплоты и количества движения

Общие закономерности процессов переноса количества движения, энергии и массы



© 2025 chem21.info Реклама на сайте