Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

АМФ иммобилизованный

    Процесс кристаллизации начинается с выделения из пересыщенного раствора мельчайших частиц кристаллизующегося компонента — зародышей кристаллов. Они способны расти, причем рост кристаллов происходит преимущественно на острых углах первоначальных зародышей. При достижении достаточной концентрации кристаллов происходит их сращивание с образованием кристаллической сетки, ячейки которой иммобилизуют оставшуюся не застывшей жидкость. [c.251]


    Депрессаторы, являясь поверхностно-активными веществами по отношению к парафинам, оказывают тормозящее действие на образование новых кристаллических зародышей. В результате образуются компактные кристаллические структуры, не соединенные друг с другом в единую кристаллическую сетку и не способные иммобилизовать всю массу раствора, что сказывается в виде понижения температуры застывания нефтепродукта (но не температуры помутнения). [c.251]

    Что же касается попыток приложения теории образования гелей как результата возникновения вокруг мицелл коллоидных частиц сольватных оболочек к объяснению процесса структурного застывания нефтяных продуктов, то такое приложение вряд ли является правомерным. В коллоидных растворах размер мицелл дисперсной фазы остается в какой-то мере соизмеримым с возможной толщиной сольватной оболочки или толщиной слоя адсорбированных на поверхности мицелл компонентов растворителя. В нефтяных же продуктах выделяющиеся кристаллики парафина, даже прп самом мелком их размере, остаются несоизмеримо более крупными по сравнению с возможными размерами сольватных оболочек, вследствие чего в последних не может иммобилизоваться такое количество жидкой фазы, чтобы вся масса раствора оказалась застывшей. [c.16]

    В более поздней гипотезе, предложенной Макошей 26, 27],. было высказано предположение, что депротонирование субстрата происходит на поверхности раздела фаз. Если катализатор в системе отсутствует, то на поверхности раздела фаз образуется как бы двухслойная структура, включающая со стороны водной фазы катион щелочного металла, а со стороны органической фазы депротонированный анион субстрата. Из-за взаимной нерастворимости в противоположных фазах ионы иммобилизуются и в значительной степени дезактивируются. Эта ситуация похожа на обычную адсорбцию на поверхности. [c.58]

    Для изучения свойств граничных слоев связанной воды толщиной 7,5—10 нм в качестве модельных объектов обычно используются дисперсии На- и Ь1-монтмориллонита. Эти препараты самопроизвольно диспергируются в воде вплоть до элементарных силикатных слоев толщиной 0,94 нм [102]. Обладая развитой поверхностью (5 — 750 м /г [66]), частички Ыа- и Ь1-монтмориллонита иммобилизуют большое количество воды, что безусловно облегчает изучение ее свойств. [c.38]

    Исследование суспензии твердых углеводородов, полученной при охлаждении раствора сырья в смеси МЭК бензол толуол со скоростью 300°С/ч, при помощи микроскопии [10, 52] показало образование плотной сетки мелких переплетающихся кристаллов, задерживающих жидкую фазу и уменьшающих скорость разделения фаз (табл. 19). При снижении скорости охлаждения раствора образуются агрегаты кристаллов, разделенные жидкой фазой и свободно перемещающиеся в дисперсионной среде. Это дает возможность проводить процесс депарафинизации с высокой скоростью фильтрования. В работах [23, 24, 46] на основании данных о депарафинизации дистиллятных рафинатов установлено образование пространственной структуры с широко разветвленным жестким скелетом, способным иммобилизовать большое количество жидкой фазы. Для разрушения такой структуры необходимо механическое воздействие, тем большее, чем выше пределы выкипания дистиллятного сырья. [c.148]


    Старение эмульсий приводит к ухудшению их реологических свойств. Вначале капли флокулируют и создают агрегаты, которые внутри своих структур иммобилизуют жидкость непрерывной фазы. При высокой скорости флокуляции наблюдается заметное возрастание вязкости в случае очень низких скоростей сдвига. Этот процесс не может быть изучен при высоких скоростях сдвига из-за разрушения агрегатов, происходящего в результате обратимой природы флокуляции. Коалесценция приводит к уменьшению числа капель на единицу объема эмульсии и к увеличению размеров индивидуальных капель. [c.300]

    При достаточной концентрации твердых углеводородов частицы кристаллов образуют пространственную сетку из дисперсной фазы. При высокой вязкости дисперсионной среды пространственная сетка иммобилизует жидкую фазу и препятствует ее движению. [c.27]

    В частном случае коагуляция может привести к образованию объемной пространственной структуры, иммобилизующей в межчастичном пространстве некоторое количество дисперсионной среды, называемой интермицеллярной жидкостью Как будт [c.23]

    Помимо электростатических ориентационных межмолекулярных взаимодействий и водородных связей в жидкостной хроматографии можно использовать и другие виды слабых специфических взаимодействий с образованием нестойких комплексов с переносом заряда. Можно иммобилизовать, т. е. закрепить адсорбционно (см. лекцию 4) или химически (см. лекцию 5) на поверхности адсорбента-носителя соответствующие электронодонорные или электроноакцепторные молекулы или группы. В лекции 5 был рассмотрен пример химического модифицирования [c.327]

    Гидрофильные коллоидные системы характеризуются тем, что растворитель связывается в них не только за счет адсорбционного взаимодействия полярных молекул воды с твердой фазой (истинная гидратация), но и за счет внутренней структуры системы (структурная гидратация). При этом огромное количество воды может быть механически захвачено ( иммобилизовано ) сложно построенным каркасом. Количество жидкости, связанной таким путем, может во много раз превысить массу дисперсной фазы. [c.276]

    В тех же случаях, когда глобулы не образуются, нитевидные макромолекулы полимеров могут сцепляться между собой по своим гидрофобным участкам, создавая прочный трехмерный каркас. Последний в состоянии механически связать ( иммобилизовать ) весь растворитель. В этом случае раствор переходит в твердообразное состояние — он застудневает. [c.279]

    Для растворов высокомолекулярных соединений формула Эйнштейна неприменима, так как макромолекулы имеют не шарообразную, а нитевидную форму и даже в разбавленных растворах взаимодействуют, образуя агрегаты, иммобилизующие жидкость. Измеренная в опыте вязкость растворов высокополимеров оказывается всегда значительно выше вычисленной теоретически по формуле Эйнштейна. Кроме того, для растворов высокополимеров не наблюдается линейного роста вязкости с ростом концентрации раствора она возрастает очень сильно благодаря образованию сетки из макромолекул. [c.221]

    На рисунке показана схема образования таких рыхлых сеток, постепенно охватывающих весь объем золя при переходе его в гелеобразное состояние. Дисперсионная среда захватывается сеткой, как губкой, т. е. полностью иммобилизуется, благодаря чему система теряет текучесть и переходит в твердообразное состояние. Следовательно, застудневание обусловливается не ли нием сольватных слоев, находящихся на частицах дисперсной фазы, а образованием сетчатых структур за счет взаимодействия активных участков частиц дисперсной фазы. [c.227]

    Структурное застывание нефтепродуктов, в частности, масел, вызывается образованием в них при охлаждении твердой фазы, частицы которой при достижении определенной концентрации связываются между собой и образуют кристаллическую структуру, иммобилизующую всю массу продукта. К таковым кристаллизую — Г1Т,имся компонентам сырья депарафинизации относятся твердые компоненты, обычно именуемые "твердыми парафинами" или "церезинами". Следует однако иметь в виду, что под термином "пара — сэины" в данном случае подразумеваются не только углеводороды ряда алканов, но и твердые кристаллические нафтеновые и ароматические углеводороды. Общим для них является их способность гыделяться в тех или иных кристаллических формах из раствора в нефтепродуктах при охлаждении. Следовательно, разные формы [c.250]

    Структурное застывание нефтяных продуктов вызывается образованием в них при охлаждении твердой фазы, частицы которой, достигнув известной концентрации, связываются между собой и образуют структуру, иммобилизующую всю массу продукта. Веществами, способными выделяться из нефтей и нефтяных продуктов описанным выше образом, являются содержащиеся в них кристаллизующиеся парафиновые углеводороды. Природа этих веществ была объяснена еще в двадцатых годах В. С. Твер-ципым [21], Б. Г. Тычининым [22], Л. Г. Гурвичем [23], Н. Д. Граменицким [24], Гольде [25] и другими исследователями и далее подтверждена многочисленными последующими работами. Здесь следует только уточнить, что термин парафины нужно понимать в данном случае не как обозначение углеводородов ряда алканов, а как наименование твердых, способных кристаллизоваться углеводородов нефти, в число которых могут входить, не только собственно парафиновые углеводороды, но и твердые кристаллические нафтеновые и ароматические углеводороды. Общим для этих углеводородов является их способность выделяться в тех или иных кристаллических формах из раствора в нефтяных продуктах при охлаждении. [c.14]


    В последующем отдельные исследователи возражали против описанного выше объяснения механизма структурного застывания нефтяных продуктов и делали попытки дать иное разъяснение этому явлению. Так, например, указывалось, что структурное застывание масел наступает в ряде случаев до того момента, когда кристаллы парафина образуют сплошную пространственную сетку. К. О. Рамайя [28] считает, что структура застывшего продукта обусловливается не кристаллической сеткой парафина, а образующимися в масле мицеллами высокоассоциированных масляных молекул , которые, по мнению Рамайя, и обусловливают образование гелеобразной структуры и застывание масла. Д. О. Гольдберг [29, не отрицая роль парафина в застывании нефтяных продуктов, объясняет явление самого застывания возникновением вокруг кристалликов (частичек) парафина сольватных оболочек, которые, по мнению Д. О. Гольдберг, достигают якобы таких размеров, что иммобилизуют всю массу масла. [c.15]

    При дендритной кристаллизации парафинов наблюдается одно явление, имеющее для нефтяных продуктов большое прикладное значение. Введенные в растворы парафина, в частности в парафинистые нефтяные продукты, поверхностно-активные примеси, вызываюпще дендритную кристаллизацию, препятствуют вместе с этим свободному протяженному прорастанию монокристаллических образований и соединению их в пространственную кристаллическую сетку, как это наблюдается в растворах нефтяных продуктов, не содержащих таких поверхностно-активных примесей. Образующиеся же вследствие действия этих примесей дендриты не связываются друг с другом, и поэтому их возникновение в растворе при его охлаждении не иммобилизует всю массу [c.71]

    При агрегатной кристаллизации, так же как и при дендритной, выделяющаяся на поверхности кристаллов парафина промежуточная фаза препятствует прорастанию кристаллов через всю массу жидкости и спаиванию их в пространственную кристаллическую сетку. Получающиеся при агрегатной кристаллизации скопления (агрегаты) кристаллов оказываются не связанными или мало связанными друг с другом, вследствие чего они нри не очень высокой их концентрации в растворе не иммобилизуют всю массу этого раствора. Поэтому при агрегатной кристаллизации, так же как и при дендритной, снижается температура застывания продукта, продукт приобретает текучесть, несколько улучшаются его фильтруемость и центрифугируемость. [c.76]

    Согласно наиболее распространенной гипотезе, кристаллизация твердых углеводородов из масла, приводящая к его застуднева-Пию, рассматривается как образование в системе парафин — масло пространственной сетки (или каркаса), которая, иммобилизуя жидкую фазу, препятствует ее движению. Сцепление частиц дисперсной фазы происходит по ребрам монокристаллов, где наблюдается разрыв пленок дисперсионной среды образовавшийся гель обладает определенной механической прочностью. Другая гипотеза связывает застудневание с возникновением сольватных оболочек жидкой фазы вокруг кристаллов парафина. Дисперсионная среда, иммобилизированная вокруг дисперсных частиц, значительно увеличивает их объем, что повышает внутреннее трение всей системы и понижает ее текучесть. Предполагают, что при сдвиге, обусловленном механическим воздействием, толщина сольватных оболочек уменьшается и гель может превращаться в золь. При понижении температуры масел развитие процесса ассоциации приводит к образованию мицелл, вызывающих застудневание системы независимо от того, выделяется твердая фаза или нет. Добавление депрессоров значительно снижает как статическое, так и динамическое предельное напряжение сдвига депрессоры задерживают появление аномальной вязкости, сдвигая начало образования структуры в область более низких температур. [c.151]

    Ассоциаты различного строения являются структурными элементами алкансодержащих дисперсий, топливных и масляных фракций, нефтяных остатков. Активно исследуемым коллоидным объектом нефтяного происхождения являются алкансодержащие дисперсии. Высокомолекулярные нормальные алканы в обычных условиях, начиная с гексадекана и выше, представляют собой твердые вещества. По мере понижения температуры из нефти выделяются кристаллы алкана. Благодаря действию адсорбционных сил часть жидкой фазы ориентируется вокруг надмолекулярных структур и образует сольватные оболочки различной толщины. Сцепление кристаллов приводит к возникновению пространственной гелеобразной структуры, в ячейках которой иммобилизована часть дисперсионной среды, при этом система в целом приобретает структурную прочность. Установлено стабилизирующее действие смолисто-асфальтеновых веществ на устойчивость дисперсий алканов [88]. Влияние термообработки на снижение температуры застывания нефтяных алканов объясняется уменьшением толщины сольватной оболочки их надмолекулярных структур [131]. [c.33]

    Согла15нО Одной из них, наиболее распространенной, кристаллизация парафина, приводящая к застудневанию масла, рассматривается как процесс частичной или структурной коагуляции диснерсдой сЬазУ. формирующей в системе парафин"—масло пространственную сетку или каркас, который, иммобилизуя жидкую фазу, препятствует ее движению [2]. [c.88]

    Дополнительно к изучению поведения при сдвиге отдельных сфер и капель изучено влияние сдвига ( 3 сек ) на сближение, столкновение и разделение твердых сфер и жидких капель (Барток и Масон, 1957). При использовании вискозиметра, в котором коаксиальные цилиндры изготовлены из нержавеющей стали, и при рассмотрении вдоль оси Z найдено, что траектории сближения и разъединения сталкивающихся твердых сфер диаметром 107 мкм или жидких сфер с диаметром - 100 мкм криволинейны. Когда две сферы подходили близко друг к другу (рис. IV.21), они никогда фактически не имели контакта, но тем не менее образовывали дуплет, который вращался как жесткая гантель. Эта модель впоследствии использована Криге-ром и Догерти (1959) при выводе уравнения течения. Вращение дуплета согласовывалось с уравнениями Джеффри (1922) для продолговатых сфероидов и это подтверждало, что между двумя сферами, образующими дуплет, жидкость иммобилизована. Экспериментальные данные также подтверждали, что траектории сближения и разъединения были зеркальным отражением одна другой. Так как период вращения твердых сфер, подвергавшихся повторным столкновениям, не изменялся, следует, что дуплеты вращались с той же угловой скоростью у/2, что и единичные сферы. [c.260]

    С помощью такого графика вычисляют чистое влияние иммобилизации жидкости на Лоэ/Лс Д я трех значений 4р- При этом берут равным 1,50л1к.и в каждом примере (табл. IV.12). Концентрацию эмульгатора выражают как число, кратное ККМ. В приведенных примерах т)оэ/Лс увеличивается линейно и приблизительно с той же скоростью, с какой возрастает концентрация эмульгатора. Экстраполяция данных дает Лоо/Лс при ККМ. Каждая избыточная молекула эмульгатора иммобилизует 28-10 мл масляной фазы. [c.288]

    Клетки можно иммобилизовать путем включения в заранее подготовленную или образованную оболочку. Такой оболочкой может служить просто граница раздела фаз между двумя несмешивающимися жидкостями. В этом случае клеточная суспензия эмульгируется в органическом растворителе и затем ресуспендируется в виде капель в водной фазе. Примером заранее приготовленной оболочки является полз проницаемая мембрана, используемая для микро- и ультрафильтрации. При этом питательные вещества легко диффундируют к клеткам, находящимся за мембраной[141]. [c.163]

    Клетки можно иммобилизовать путем флокуляции с образованием больших агрегатов. Естественная флокуляция дрожжевых клеток происходит по окончании ферментации, й моб 1лкзо2атале таки .5 гг) тем [слетки используются б башенных ферментерах при производстве тта. Мицелий грибов также образует агрегаты в виде сферических пеллет. Флокуляция является характерным процессом очистки сточных вод активным илом. Для усиления агрегации могут использоваться искусственные флокулянты, хотя механизм флокулообразования еще слабо изучен [141]. [c.163]

    В результате исследований выявлено, что исследуемые адсорбенты способны иммобилизовать примерно одинаковое количество мицелия Fusarium sp. №56 - в среднем 1,1 г/г адсорбента. Наилучшей способностью к адсорбции клеток Rhodo o us erythropolis [c.171]

    В работе [173] описывается очистка сточной воды, содержащей 1% масс, нефти, на пилотной установке с биофильтром. Биофильтр представляет собой носитель пенопласт или капроновые ершики, на которых иммобилизованы деструкторы нефти и нефтепродуктов Rhodo o us erythropolis АС-1339 Д и Fusarium sp. №56. Результаты исследований представлены в табл. 4.11 [c.172]

    Согласно предложенной в работе [25] гетерогенно-гомогенной концепции, в жидкофазных процессах олигомеризации СФ-катализаторы иммобилизуют на своей поверхности хемосорбированный каталт ически активный комплекс, состоящий из смол и протонов свободной кислоты, в объеме которого происходят соотве ствующие рекомбинации промежуточных соединении по карбоний-ионному механизму реакций углеводородов. Кроме того, как будет показано далее, в образовании этого комплекса участвует свободная кислота и гидролизуемые силикафосфаты, составляющие твердую основу к гта н1затора, переходя при температуре эксплуатации катализатора из твердофазного в жидкофазное состояние. [c.25]

    Хотя из уравнения реакции и не следует, для инициации реакции необходимо лишь небольшое количество АТР (меньше чем 1/1000 по массе), поскольку реакция поддерживается образующимся АТР. Три фермента иммобилизованы на сшитом полиакриламидном геле путем взаимодействия их первичных аминогрупп с активными эфирами на поверхностн полимера. [c.138]

    Вообще говоря, возможны четыре типа факторов, определяющих каталитическую активность фермента. Во-первых, необходим химический аппарат в активном центре, способный деформировать или поляризовать химические связи субстрата, что делает последний более реакционноспособным, во-вторых,— связывающий центр, иммобилизующий субстрат в правильном положении к другим реакционным группам, участвующим в химическом превращении, в-третьих,— правильная и точная ориентация субстрата, благодаря которой каждая стадия реакции проходит с минимальным колебательным или вращательным движением вокруг связей субстрата, и, наконец, в-четвертых, способ фиксирования субстрата должен способствовать понижению энергии активации ферментсубстратного комплекса в переходном состоянии. Соответствующее распределение зарядов в активном центре и геометрия активного центра входят в число факторов, определяющих снижение суммарной энтропии переходного состояния. Все эти факторы в той или иной степени влияют на структуру активного центра фермента, и их нельзя рассматривать изолированно, вне связи друг с другом. В совокупности они увеличивают скорость ферментативной реакции и позволяют ферменту выступать в роли мощного катализатора [77]. [c.209]

    Выпускаемые в настоящее время промышленностью капилшяриые колонки обычно имеют внутренний диаметр от 0.05 до 0,75 мм и длину от 30 до 105 м. Слой неподвижной фазы толщиной от 0,1 до 0,8 мкм наносят непосредственно на внуфеннюю i юверхносг . колонки или пришиваюг к ней химически. В качестве неподвижных фаз применяют полимеры, каучуки (0V-1, SE-30) или твердые вещества (карбовакс 20 М). Основные характеристики неподвижных фаз. используемых в капиллярных колонках, приведены в табл. 7 5. Существуют различные способы их нанесения. Чаще всего неподвижную фазу растворяют в соответствующем растворителе и наносят на внутреннюю поверхность капилляра динамическим или статическим методами (29 . Дтя достижения стабильной работы колонок в последнее время неподвижные фазы иммобилизуют путем связывания отдельных фупп друг с другом или с поверхностью кварцевого [c.255]

    Для удобства применения холинэстеразы иммобилизуют в по.шмер-ные пленки или гели. При этом существенно увеличивается устойчивость фермента к влиянию внешних факторов. Так, при иммобилизагщи холинэстеразы в желатиновый гель срок ее хранения составляет 2-3 года, а при непрерьганой работе активность препарата падает на 20% лишь через 10 дней. Наряд) с повьпиением стабильности иммобилизация хо.пинэстераз обеспечивает многократное использование препарата. Заметим, что при определении необратимых ингибиторов, например фосфорорганических пестицидов, повторное использование фермента в каждом случае требует специальных исследований В качестве реактиваторов применяют гидро-ксиламин, оксимы и др [c.290]

    Если холинэстераза иммобилизована с помощью ковалентного связывания, то срок службы биосенсора возрастает Так, датчик, состоящий из рН-электрода с иммобилизованной на поверхности ацетилхолинэсте-разой (путем сшивки глутаровым альдегидом с альбумином), функционирует без изменения характеристик достаточно длительное время. С его помощью определяли паратион и севин на уровне 10 - 10моль/л Продолжигельность анализа 30 мин. Содержание паратиона и севина контролировали по относительному снижению отклика сенсора после внесения в ячейку аликвоты пробы. Заметим, что величина измеиения pH зависит не только от активности фермента, но и от буферной емкости раствора. Поскольку увеличение кислотности происходит лишь на мембране, а в объеме раствора pH остается практически постоянным, обычно применяют высокие (до 0,1 моль/л) концентрации субстрата и ячейки большого (100 мл и выше) объема. Кроме глутарового альдегида для иммобилизации холинэстеразы используют сополимеры акрил- и метакриламида, желатин. В последнем случае стеклянный шарик рН-электрода погружают в 5-10%-й раствор желатина, содержащий фермент, затем высушивают и обрабатывают водным раствором глутарового альдегида. Аналогичные мембраны используют и в датчиках на основе рН-чув-ствительных полевых транзисторов (911. [c.294]

    В практике нефтепереработки наиболее распространенными являются нефтяные дисперсные системы с дисперсной фазой в твердом, жидком и газообразном состоянии и жидкой дисперсной средой. Реальные нефтяные системы ввиду сложности их состава являются полигетерофазными дисперсными системами различных типов, что чрезвычайно усложняет выявление особенностей их поведения. Различными нефтяными дисперсными системами являются парафиносодержащие нефти и нефтепродукты, В различных нефтях содержание парафинов колеблется от долей процента до 20 процентов. По мере понижения температуры из нефти выделяются кристаллы парафина (твердых углеводородов), образующие структуры, размеры и количество которых в объеме изменяются. Благодаря действию адгезионных сил часть жидкой фазы ориен тируется вокруг надмолекулярных структур в виде сольватных слоев определенной толщ гны. При определенной, достаточно низкой температуре, кристаллы парафинов сцепляются, что приводит к возникновению пространственной гелеобразной структуры, в ячейках которой иммобилизована часть дисперсионной среды. Система при этом приобретает структурно-механическую прочность. Установлено [7, 8], что присутствие сложных асфальтеновых веществ способствует стабилизации устойчивости дисперсий парафина. [c.34]

    Аналогичные явления наблюдаются при испарении конденсатонефтяных смесей. При этом повышение концентрации нефти в исходной смеси приводит к вырождению первого пика. По всей вероятности, в этих условиях высокомолекулярные ко.м-поненты нефти за счет преимущественного взаимодействия с образованием коагуляционных каркасов интенсивно иммобилизуют часть легких фракций газового конденсата и одновременно тормозят, либо исключают возможность их испарения. [c.108]

    По кривым испарения ТС были рассчитаны выходы из смесей фракций, выкипающих до 180°С, 250°С и 350°С, представленные на рис. 5.6. Как видно, для всех исследуемых сырьевых смесей при повышении концентрации в них нефти выход легких фракций уменьшается. Однако изменение выхода отдельных фракций происходит не монотонно, а по некоторым экстремальным зависимостям, что наиболее заметно для более легких фракций в интервалах концентраций нефти в смесях 10-15% мае. Полученные данные позволяют косвенно предположить возможность изменения качества дистиллятных фракций, получаемых при перегонке конденсатонефтяных смесей при различных соотношениях компонентов. На зависимостях, представленных на рис. 5.7 выделены кривые изменения выхода фракции 180-350°С. Рассматривая в совокупности представленные значения выходов различных фракций, можно заключить, что их величины существенно различаются в зависимости от исходной сырьевой пары газовый конденсат-нефть. По всей вероятности, компоненты исходных сырьевых смесей обладают некоторым сродством, которое определяет их взаимодействие с образованием в общих случаях коагуляционных каркасов различной прочности, иммобилизующих некоторые составляющие системы, а в других, напротив, разруше- [c.108]

    Проявление кризисных состояний с образованием структурных модификаций в системе можно проследить также на примере процесса перегонки нефтяного сырья. В общем случае при перегонке нефтяного сырья, по мере испарения части легких компонентов происходит сближение, коалесценция и взаимная фиксация смолисто-ас-фальтеновых частиц. При этом в межчастичном пространстве иммобилизуются компоненты среды, которые находятся также в виде прослоек между частицами. В результате в системе формируются флокулы, находящиеся в броуновском движении. В этих условиях в системе сосуществуют структурные образования в виде мицелл и сложных структурных единиц. Дальнейшее испарение системы приводит к вытеснению части иммобилизованных компонентов, практическому исчезновению прослоек между частицами и их непосредственному контакту. При этом образуются достаточно прочные агрегативные комбинации, окклюдирующие тем не менее некоторое количество компонентов, находившихся ранее в иммобилизованном состоянии. Остаточное количество последних зависит прежде всего от начальных размеров смо-листо-асфальтеновых частиц и физико-химических параметров испаряемой системы. Воздействуя на систему в кризисных состояниях можно регулировать конфигурацию и плотность упаковки структурных образований, изменять количество иммобилизованной фазы, переводить ее в раствор с последующим удалением из системы при перегонке. [c.172]

    Рассмотренный выше адсорбционный способ иммобилизации добавленного в элюент компонента, вступающего в адсорбированном состоянии во взаимодействие с дозируемыми веществами, используется и в так называемой ион-парной хроматографии. В таких случаях на гидрофобизированной поверхности адсорбцией из элюента иммобилизуют, например, ион алкиламмония с достаточно сильно адсорбирующимися на такой поверхности алкильными группами. При дозировании смеси органических кислот они, во-первых, могут образовывать с находящимися в элюенте алкилам-монийными ионами нейтральные молекулы, по-разному адсорбирующиеся на модифицированной поверхности адсорбента, и, во-вторых, могут образовывать такие молекулы с иммобилизованными алкиламмонийными ионами. У разных кислот устойчивость комплексов с аммонийными ионами будет различна и благодаря этому произойдет их разделение. [c.331]

    ПодготоЕ ленная путем модифицирования реакцией с -амино-пропилтриэтоксисиланом поверхность достаточно крупнопористого силохрома или силикагеля может быть использована для иммобилизации белков и, в частности, ферментов, нужных для проведения -биокаталитических реакций. Для этого, как указывалось в лек-дии 5, надо провести дальнейшее модифицирование поверхности адсорбента-носителя прививкой агента (глутарового альдегида), способного вступить в реакцию с аминогруппами как модификатора, так и балка. Адсорбент-носитель с привитыми теперь уже альдегидными концевыми группами вводится в реакцию с различными белками. Ра ссмотрим иммобилизацию уреазы — важного фермента, находящего также применение в аналитическом определении мочевины и в аппарате искусственная почка . На рис. 18.9 представлена зависимость активности иммобилизованной уреазы от количества иммобилизованного белка. Адсорбентом-носителем является макропористый силохром со средним диаметром пор 180 нм. Этот размер пор значительно превышает размер глобулы уреазы. Вместе с тем удельная поверхность этого силохрома еще достаточно высока (5 = 41 м /г), чтобы обеспечить иммобилизацию значительного количества уреазы. Из рис. 18.9 видно, что при этом удается иммобилизовать до 120 мг белка на 1 г сухого адсорбента-носителя (это составляет около 3 мг/м ). Активность уреазы снижается не более, чем наполовину, даже при большом количестве уреазы в силикагеле, зато иммобилизованный так фермент можно многократно применять в проточных системах, и он не теряет активности при хранении по крайней мере в течение полугода. [c.341]

    Дисперсионная среда, иммобилиза- Коалесценция 6 , 8  [c.257]

    Поверхность фибриллярных и глобулярных белков имеет большое количество гидрофильных групп, создающих вокруг этих макроструктур почти сплошную водную оболочку. Гидрофобные радикалы аминокислот, образующих полипептидные цепи, обращены, видимо, преимущественно внутрь структуры. Тем не менее некоторые количества воды связаны (иммобилизованы) и внутри их 1) диполи воды могут вклиниваться в водородные связи, не нарушая их прочности 2) гидрофильные группы содержатся и во внутренних отделах макроструктур белков, где связывают определенное количество воды 3) некоторое количество воды замкнуто внутри белковых молекул в своеобразных сотах , образованных гидратированными полипептидными цепочками. Благодаря этому различают интрамицеллярную воду, находящуюся внутри белковых глобул, и интермицеллярную воду, находящуюся в свободном состоянии между ними. Для устойчивости коллоидных частиц имеет значение только вода, создающая внешнюю водную оболочку, препятствующую столкновению и объединению частиц. [c.180]


Смотреть страницы где упоминается термин АМФ иммобилизованный: [c.9]    [c.15]    [c.18]    [c.113]    [c.107]    [c.237]    [c.204]    [c.328]   
Хроматографические материалы (1978) -- [ c.3 , c.121 ]




ПОИСК







© 2025 chem21.info Реклама на сайте