Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность адсорбента модифицирование

    Таким образом, энергия неспецифической адсорбции на модифицированных таким способом адсорбентах (так же как на поверхности адсорбентов, модифицированных адсорбированными слоями органических веществ, и на поверхности молекулярных кристал- [c.94]

    ИЗМЕНЕНИЕ ХИМИЧЕСКОЙ ПРИРОДЫ ПОВЕРХНОСТИ АДСОРБЕНТОВ (МОДИФИЦИРОВАНИЕ АДСОРБЕНТОВ) [c.96]


    Таким образом, энергия неспецифической адсорбции на модифицированных таким образом адсорбентах, как и на поверхности адсорбентов, модифицированных адсорбированными слоями органических веществ и на поверхности молекулярных кристаллов, обычно меньше, чем на самом кремнеземе, других, оксидах, а также атомных или ионных кристаллах. [c.191]

    Химическое модифицирование поверхности адсорбентов и различных высокодисперсных тел (пигментов, наполнителей для полимеров, волокнистых материалов и т. п.) с помощью инертных, а также способных к реакциям сополи-меризации групп имеет большое практическое значение для улучшения свойств различных покрытий и пластмасс. [c.504]

    Адсорбционные свойства силикагеля регулируют варьированием его пористой структуры и изменением химической природы поверхности. Расширение узких пор между глобулами, являющихся причиной геометрической неоднородности силикагеля, называется геометрическим модифицированием. Изменение химической природы поверхности адсорбента путем присоединения к ней различных химических соединений называется химическим модифицированием. [c.88]

    В первой части описывается химия поверхности и адсорбционные свойства основных неорганических и органических адсорбентов (от таких одноатомных непористых и однородных, как графитированные сажи, до пористых органических полимеров), адсорбционное и химическое модифицирование поверхности адсорбентов, спектроскопическое исследование поверхностных соединений и адсорбционных комплексов. В этой части устанавливается качественная связь структуры молекул с адсорбционными свойствами, ярко проявляющаяся в хроматографии. [c.3]

    Из этого неполного перечня видно, как важны исследования химии поверхности неорганических и органических твердых тел и их межмолекулярного взаимодействия с компонентами различных сред. Эти исследования требуют объединения методов неорганического и органического синтеза с самыми современными физическими методами изучения структуры поверхности твердого тела и строения молекул. В кратком курсе лекций невозможно осветить все научные и прикладные аспекты химии поверхности твердых тел, ее модифицирования и влияния на межмолекулярные и химические взаимодействия с различными средами. В пособии рассмотрена хими/ поверхности адсорбентов, применяемых в газовой и молекулярной жидкостной хроматографии, и, соответственно, адсорбция из газовой фазы и жидких растворов при малых концентрациях, лежащая в основе селективности этих видов хроматографии. Эти проблемы исследованы как на макроскопическом уровне с использованием термодинамических характеристик адсорбции, так и на микроскопическом (молекулярном) уровне с привлечением молекулярно-статистической теории адсорбции и теории межмолекулярных взаимодействий. [c.7]


    Для создания устойчивых по отношению к воздействию среды поверхностных химических соединений нужны прочные химические связи между поверхностью и веществами-модификаторами. Таким химическим модифицированием поверхности можно резко изменять ее адсорбционные свойства. Для многих процессов адсорбции с последующей регенерацией и особенно для адсорбционной хроматографии нужна такая поверхность, которая по отношению к молекулам в газе или растворе соответствовала бы девизу хроматографии схвати, подержи и отпусти . Этот девиз хроматографии отличается от девиза схвати и не отпускай , которым можно выразить требования к работе противогаза или шунта с адсорбентом, применяемого для экстракорпорального (вне организма) поглощения ядов из крови. В адсорбционной хроматографии адсорбция на поверхности адсорбента в хроматографической колонне должна сопровождаться десорбцией, полностью регенерирующей адсорбент в самом процессе хроматографии. Поэтому и взаимодействия молекул подвижной среды колонны (газа, жидкости) с неподвижным адсорбентом, заполняющим хроматографическую колонну, не должны быть слишком сильными. [c.7]

    Селективность газоадсорбционного варианта хроматографии обычно гораздо выше, чем газожидкостного. Однако реализации этой высокой селективности ГАХ мешала низкая эффективность газоадсорбционных колонн. По мере увеличения однородности поверхности адсорбентов и усовершенствования способов ее модифицирования, а также методов синтеза новых, более однородных адсорбентов с конца 50-х годов началось развитие газоадсорбционного варианта хроматографии, приведшее к созданию высокоэффективных капиллярных колонн, наполненных небольшими зернами адсорбентов с поверхностью, близкой к однородной. В этом курсе будет рассмотрена газоадсорбционная хроматография не только как высокоселективный и достаточно эффективный метод анализа сложных смесей и как удобный метод изучения адсорбции, но и как важный способ изучения межмолекулярных взаимодействий, а также как экспериментальная основа нового метода определения некоторых параметров структуры молекул. [c.9]

    ЛЕКЦИЯ 4. АДСОРБЦИОННОЕ МОДИФИЦИРОВАНИЕ ПОВЕРХНОСТИ АДСОРБЕНТОВ [c.74]

    Цели и возможности адсорбционного модифицирования поверхности адсорбента [c.75]

    В лекциях 4 и 5 были приведены примеры адсорбционного и химического модифицирования поверхности адсорбентов с жестким скелетом — непористых и широкопористых саж и кремнеземов. Если модифицирующие молекулы сильно адсорбированы, имеют вытянутую или плоскую конфигурацию, а также если химически прививаемые к поверхности кремнезема группы обладают большой жесткостью и ограниченной конформационной подвижностью, модифицированный адсорбент также можно считать инертным. Если же к поверхности кремнезема привиты длинные н-алкильные цепи, то в результате их конформационной подвижности, особенно при высоких температурах, адсорбция может сопровождаться абсорбцией, т. е. объемным поглощением молекул, проникающих между этими цепями. Это же может происходить и при адсорбционном модифицировании адсорбентов-носителей слабо связанными с поверхностью конформационно подвижными слоями полимеров. [c.128]

    Помимо электростатических ориентационных межмолекулярных взаимодействий и водородных связей в жидкостной хроматографии можно использовать и другие виды слабых специфических взаимодействий с образованием нестойких комплексов с переносом заряда. Можно иммобилизовать, т. е. закрепить адсорбционно (см. лекцию 4) или химически (см. лекцию 5) на поверхности адсорбента-носителя соответствующие электронодонорные или электроноакцепторные молекулы или группы. В лекции 5 был рассмотрен пример химического модифицирования [c.327]

    Киселев и Щербакова (1962) использовали свой обширный опыт по химическому и геометрическому модифицированию поверхности адсорбентов для приготовления стеклянных капилляров. Авторы связали наиболее активные центры химически неоднородной поверхности слабо адсорбирующими группами. Были получены почти прямолинейные изотермы [c.327]

    Для данной комбинации растворитель-адсорбент элюирующая способность растворителя определяется энергией взаимодействия Е ,а, т.е. элюирующая способность растворителя различна для разных адсорбентов и. с определенными ограничениями, может быть предсказана по рис. 171. Для каждого сорбента должен быть свой элюотропный ряд, поэтому более основные растворители следует применять в сочетании с силикагелем или оксидом алюминия, а кислотные растворители - в сочетании с силикагелем, модифицированным аминогруппами. Применяемый для характеристики элюирующей способности параметр е есть энергия взаимодействия молекулы растворителя с единицей площади поверхности адсорбента, поэтому он применим для оценки любого сочетания сорбент/растворитель. [c.85]

    К промежуточным методам относится хроматография на модифицированном сорбенте (газо-жидко-твердофазная), основанная на том, что неподвижной фазой служит твердый адсорбент, модифицированный небольшим количеством жидкости. В этом случае играют роль как адсорбция на поверхности газ-твердое тело (и, в определенной степени, — на поверхности жидкость-твердое тело), так и растворимость в жидкости. Существуют и другие промежуточные варианты. [c.9]


    Кроме силикагелей, к полярным адсорбентам относятся - N, КНг-, диол- и ряд других химически модифицированных силикагелей с различными функциональными полярными группами на поверхности адсорбента. КНг-привитые силикагели эффективно [c.31]

    Адсорбционное модифицирование — блокирование активных центров поверхности адсорбента за счет адсорбции молекул сильнополярных высокомолекулярных соединений, которые при температуре разделения не десорбируются из колонки. [c.281]

    Изменение доли органического компонента в элюенте сильно изменяет селективность разделения ПАС и насыщенных углеводородов. Повышение концентрации органического компонента в элюенте дает большее различие в удерживании жестких плоских молекул ПАС относительно неплоских на модифицированном адсорбенте с С е по сравнению с адсорбентами с С1 и Сз. Было обнаружено, что адсорбенты с С1 и С близки по характеристикам удерживания. Селективность разделения на адсорбенте с С, для некоторых смесей несомненно выше. Однако селективность в целом определяется не только длиной цепей, привитых к поверхности адсорбента, но и природой элюента [c.311]

    Наряду с геометрической структурой, химическая природа поверхности адсорбентов, высокодисперсных наполнителей, загустителей смазок в значительной степени определяет их свойства. Химическим модифицированием поверхности можно в значительной степени изменять адсорбционные и технологические свойства важнейших дисперсных систем. [c.165]

    Уменьшение адсорбции азота, криптона и других адсорбатов на единицу поверхности модифицированных адсорбентов [363, 339] указывает, что принятое ранее при расчете удельных поверхностей адсорбентов допущение о постоянстве молекулярных площадок адсорбата является неверным. На таких адсорбентах не размеры молекулы адсорбата определяют величину молекулярной площадки, а топография самой химической поверхности адсорбента становится определяющим фактором. Молекулярные площадки существенно возрастают по мере замещения ОН-групп на атомы фтора или органические радикалы. Так как удельная поверхность 5 = Ыа, ( 1о при модифицировании мало изменяется, а адсорбция а ,, соответствующая покрытию мономолекулярным слоем, уменьшается, то формальным следствием этого является резкое возрастание молекулярных площадок соо адсорбата. Следовательно, можно говорить лишь о формальном применении уравнения изотермы адсорбции БЭТ для модифицированных адсорбентов. Определение удельной поверхности модифицированных адсорбентов методом БЭТ, даже по адсорбции азота или благородных газов, не является надежным из-за незнания величин молекулярных площадок, которые зависят от природы поверхности. [c.172]

    Модифицирование неоднородной поверхности адсорбента нанесением небольшого количества органического вещества, адсорбирующегося в первую очередь на наиболее неоднородных местах поверхности, или плотного монослоя, покрывающего всю поверхность адсорбента-носителя, снижает потенциал адсорбционных сил особенно на наиболее неоднородных участках поверхности адсорбента-носителя и делает поэтому модифицированную таким образом поверхность более однородной. И хотя модифицирующие слои часто физически неоднородны, они могут вести себя как практически однородные по отношению к адсорбции достаточно крупных молекул 18, 43]. Модифицирование поверхности твердого тела плотными монослоями молекул или макромолекул, содержащих соответствующие функциональные группы, приводит к увеличению адсорбции молекул, способных к специфическому межмолекулярному взаимодействию с этими группами [18, 36, 43]. [c.21]

    Адсорбенты с нанесенными на поверхность модифицирующими слоями. Помимо прямого синтеза или термической обработки адсорбентов для получения близкой к однородной поверхности возможен и другой путь — адсорбционное или химическое модифицирование неоднородной поверхности адсорбента-носителя. Обычно такое модифицирование приводит к уменьшению энергии адсорбции вследствие экранирования адсорбента-носителя. Поэтому для применений, например в газовой хроматографии, удельная поверхность адсорбента-носителя должна быть достаточно велика. [c.76]

    Значительного улучшения однородности поверхности адсорбентов иногда можно достичь ее химическим модифицированием. При этом можно использовать блокировку только особо активных центров, например сильных акцепторных центров, применяя соответствующие органические основания [392]. Можно произвести и более полное химическое модифицирование поверхности адсорбента, используя реакции с находящимися на ней ионами [393] или функциональными группами [306, 394, 395], и получить довольно однородные адсорбенты с различной специфичностью [396]. [c.81]

    Таким образом, из изложенного вытекает, что величина площадки, занимаемой молекулой адсорбата в заполненном монослое, является функцией природы поверхности адсорбента. Особенно большие отклонения от стандартных значений ю наблюдаются при химическом модифицировании поверхности адсорбентов. В связи с этим определение удельной поверхности адсорбентов с химически неоднородной поверхностью по БЭТ требует внимательного подхода к выбору адсорбтива. Применение в этих случаях в качестве адсорбтивов паров воды и полярных органических веществ недопустимо, так как адсорбция этих паров весьма чувствительна к химической природе поверхности. Так, например, адсорбция паров воды, спиртов, бензола сильно зависит от наличия и концентрации на поверхности окисных сорбентов гидроксильных групп. Следовательно, в качестве адсорбатов следует применять вещества, наименее чувствительные к химической неоднородности поверхности. Для уменьшения ошибки нри определении целесообразно предварительно изучить адсорбцию выбранного пара на данной поверхности, величина которой оценена независимым методом [42]. [c.30]

    Сущность и особенности физико-химических процессов распределений в газо-адсорбционной хроматографии. Непористые и пористые адсорбентьь применяемые в газовой хроматографии. Роль геометрической структуры адсорбента. Молекулярные сита. Неспецифические и специфические адсорбенты разных типов, роль химической природы поверхности адсорбента. Пористые полимеры. Вредное влияние неоднородности поверхности твердого тела и способы его ослабления. Способы улучщения разделения и достижения большей симметрии пика. Непористые адсорбенты. Пористые и макропористые адсорбенты, соотношение между удельной поверхностью и размерами пор. Химическое и адсорбционное модифицирование поверхности адсорбентов. Выбор оптимальной геометрической структуры и химии поверхности для разделения конкретных смесей. [c.297]

    Исключительно важное значение химия поверхности адсорбентов и носителей имеет в газовой и жидкостной хроматографии для анализа сложных смесей, препаративного выделения чистых веществ и управления технологическими процессами. Химия поверхности играет важную роль и в процессах, протекающих в биологических системах. К ним относится, в частности, взаимодействие биологически активных веществ, в том числе лекарственных препаратов, с рецепторами — местами их фиксации в организме. Изучение модифицирования поверхности необходимо для решения вопросов совместимости искусственных материалов с биологическими. Химическое модифицирование адсорбентов применяется при разработке эффективных методов вывода из крови разного рода токсинов (гемосорбция). Прививка к поверхности крупнопористых адсорбентов и носителей соединений с определенными химическими свойствами необходима для иммобилизации ферментов, их хроматографического выделения и очистки, а также для иммобилизации клеток. Иммобилизованные ферменты и клетки эффективно используются в промышленном биокатализе, обеспечивая высокую избирательность сложных реакций в мягких условиях. Очистка и концентрирование вирусов гриппа, ящура, клещевого энцефалита и других для получения эффективных вакцин требует применения крупнопористых адсорбентов с химически модифицированной поверхностью. [c.6]

    Избежать этих недостатков можно, применяя адсорбционное модифицирование поверхности таких адсорбентов. В отличие от нанесения больших количеств жидкостей на носители с малой удельной поверхностью, используемого в газожидкостной хроматографии, когда основной причиной удерживания является растворение в неподвижной жидкой фазе, при модифицировании поверхности адсорбентов-носителей для газоадсорбционной хроматографии количество модифицирующего вещества должно быть небольшим. В случае лет учих модификаторов оно не должно превышать количества, достаточного для образования плотного мономолекулярного слоя, чтобы все молекулы модификатора контактировали бы с адсорбентом-носителем. Поэтому для обеспечения необходимой [c.75]

    Адсорбционное модифицирование графитированных саж и кремнеземов с (успехом используют для получения адсорбентов с разной химией поверхности. Для этого поверхность адсорбента-носителя покрывают плотными монослоями сильно адсорбирующихся на нем молекул или макромолекул, содержащих разные функциональные группы. Таким образом можно значительно увеличить набор селективных адсорбентов для хроматографии и в результате увеличения однородности поверхности и блокировки тонких пор повысить эффективность колонн. При этом достигается не только нужная специфичность адсорбента, но и, благодаря экранированию модификатором силовых центров самого адсорбента-носителя, снижается общая энергия адсорбции, в особенности вклад в нее энергии неспецифических межмолек улярных взаимодействий. Это вызывается тем, что, в отличие от неорганического адсорбента-носителя, средняя поверхностная концентрация силовых центров (атомов, образующих молекулы модификатора) меньше, так как расстояния между молекулами модификатора даже в- плотном монослое определяются их вандерваальсовыми размерами. Уменьшение энергии адсорбции позволяет понизить температуру колонны при разделении данной смеси. [c.76]

    Для придания поверхности адсорбента электроноакцепторных свойств и использования образования комплексов с переносом заряда было применено модифицирование поверхности ГТС нитросоединениями. Так, например, для анализа сложных смесей алифатических и ароматических углеводородов используется сходный по свойствам с ГТС макропористый (углеродный адсорбент карбопак С с нанесенным на него монослоем плоских молекул модификатора — 2, 4, 5, 7-тетранитрофлуоренона, содержащих электроноакцепторные нитрогруппы  [c.80]

    При отложении же пеларгоната холестерина на адсорбент-носитель с большой удельной поверхностью (силохром) зависимость дельного удерживаемого объема от Т совершенно другая. Как видно из рис. 4.7, б, в области температур объемного перехода пеларгоната холестерина в мезоморфное состояние скачкообразного изменения в удерживании изомеров ксилола не наблюдается. Наоборот, во всем исследованном интервале температур, как ниже, так и выше области существования объемной мезофазы, с увеличением температуры наблюдается монотонное уменьшение удельных удерживаемых объемов. В этом сл(учае селективность адсорбента, модифицированного монослоем пеларгоната холестерина, к мета- и пара-изомерам ксилола сохраняется во всем исследуемом интервале температур, лишь постепенно уменьшаясь с ростом температуры от а= 1,32 до а= 1,25. [c.84]

    Рассмотрим теперь разделение на силикагеле с гидроксилированной поверхностью веществ, растворимых только в сильно полярных растворителях, на примере углеводов. Углеводы плохо разделяются на гидроксилированной поверхности силикагеля из сильно полярных элюентов, потому что силанольные группы поверхности имеют кислотный характер. Особое значение для разделения таких полярных адсорбатов из полярных элюентов на гидроксилированной поверхности силикагеля имеет модифицирование поверхности адсорбента органическими модификаторами с полярными группами основного характера (электронодонорными группами), обращенными к элюенту. Удержать на поверхности полярного адсорбента такие модификаторы можно, как это было показано в лекциях 4 и 5, прибегнув к предварительному адсорбционному или химическому модифицированию поверхности полярного адсорбента кислотного типа. В частности, в лекции 5 было рассмотрено аминирование силикагеля путем проведения химической реакции силанольных групп его поверхности с -аминопро-пилтриэтоксисиланом [см. реакцию (5.23)]. Однако не обязательно проводить предварительное химическое модифицирование повер ) -ности. Можно воспользоваться адсорбцией бифункциональных веществ, в данном случае диаминов, добавив их в элюент в такой концентрации, при которой обеспечивается создание достаточно плотибго адсорбционного слоя. Молекулы этих непрерывно действующих на адсорбент в колонне при прохождении элюента адсорбционных модификаторов должны быть бифункциональными, в данном случае обе группы должны быть донорами, чтобы одна из них обеспечивала сильное специфическое взаимодействие с силанольными группами поверхности силикагеля, а другая была бы обращена к элюенту для Обеспечения опецифичеокого взаимодействия с дозируемыми адсорбатами. Важно при этом, чтобы создание достаточно плотного мономолекулярного слоя модификатора обеспечивалось при весьма малых его концентрациях в элюенте. Такими бифункциональными модификаторами по отношению к кислым силанольным группам силикагеля из водно-ор- [c.301]

    Рассмотренный выше адсорбционный способ иммобилизации добавленного в элюент компонента, вступающего в адсорбированном состоянии во взаимодействие с дозируемыми веществами, используется и в так называемой ион-парной хроматографии. В таких случаях на гидрофобизированной поверхности адсорбцией из элюента иммобилизуют, например, ион алкиламмония с достаточно сильно адсорбирующимися на такой поверхности алкильными группами. При дозировании смеси органических кислот они, во-первых, могут образовывать с находящимися в элюенте алкилам-монийными ионами нейтральные молекулы, по-разному адсорбирующиеся на модифицированной поверхности адсорбента, и, во-вторых, могут образовывать такие молекулы с иммобилизованными алкиламмонийными ионами. У разных кислот устойчивость комплексов с аммонийными ионами будет различна и благодаря этому произойдет их разделение. [c.331]

    ПодготоЕ ленная путем модифицирования реакцией с -амино-пропилтриэтоксисиланом поверхность достаточно крупнопористого силохрома или силикагеля может быть использована для иммобилизации белков и, в частности, ферментов, нужных для проведения -биокаталитических реакций. Для этого, как указывалось в лек-дии 5, надо провести дальнейшее модифицирование поверхности адсорбента-носителя прививкой агента (глутарового альдегида), способного вступить в реакцию с аминогруппами как модификатора, так и балка. Адсорбент-носитель с привитыми теперь уже альдегидными концевыми группами вводится в реакцию с различными белками. Ра ссмотрим иммобилизацию уреазы — важного фермента, находящего также применение в аналитическом определении мочевины и в аппарате искусственная почка . На рис. 18.9 представлена зависимость активности иммобилизованной уреазы от количества иммобилизованного белка. Адсорбентом-носителем является макропористый силохром со средним диаметром пор 180 нм. Этот размер пор значительно превышает размер глобулы уреазы. Вместе с тем удельная поверхность этого силохрома еще достаточно высока (5 = 41 м /г), чтобы обеспечить иммобилизацию значительного количества уреазы. Из рис. 18.9 видно, что при этом удается иммобилизовать до 120 мг белка на 1 г сухого адсорбента-носителя (это составляет около 3 мг/м ). Активность уреазы снижается не более, чем наполовину, даже при большом количестве уреазы в силикагеле, зато иммобилизованный так фермент можно многократно применять в проточных системах, и он не теряет активности при хранении по крайней мере в течение полугода. [c.341]

    В этом направлении большой интерес представляют работы Зи, Блемера, Рийндерса, Ван Кревелена [273, 274], использовавших в качестве флюидов пентап, диэтиловый эфир, изопропанол при давлении 30—50 атм и температуре 250° С вместо газа-носителя низкого давления. В основе метода флюидной хроматографии лежит принцип смещения адсорбционного равновесия, которое определяется двумя факторами молекулярным взаимодействием в плотной газовой фазе и модифицированием поверхности адсорбента молекулами адсорбированного газа-носителя — флюида. Метод позволяет при температуре 200—250° С разделять производные алкилбензолов с числом атомов углерода 36 (температура кипения выше 500° С) за короткое время одновременно улучшается симметрия пиков. В работе [273] приведены примеры разделения антиоксидантов, алкалоидов, хинонов и эпоксисмол (рис, 52, 53). [c.155]

    В газоадсорбционной хроматографии (ГАХ) разделение соединений происходит за счет различной адсорбируемости на поверхности адсорбента. Г АХ — один из основных методов газовой хроматографии наряду с газо-жидкостной хроматографией. ГАХ широко используется для разделения газов и паров легкокипящих соединений, структурных изомеров, а также для разделения высококипящих соединений. Адсорбция на плоских поверхностях более чувствительна к геометрической структуре молекул по сравнению с растворением, т.к. в первом случае молекула испытывает одностороннее межмолекулярное взаимодействие с адсорбентом, а во втором она окружена молекулами растворителя со всех сторон. Для ГАХ разработаны однородные неорганические, полимерные и углеродные адсорбенты. Возможности ГАХ значительно расширила разработка различных методов геометрического, адсорбционного, ионообменного и химического модифицирования. Колонки с неорганическими и углеродными адсорбентами не имеют собственного фона, в отличие от колонки с сорбентами на основе жидких фаз. Это обстоятельство позволяет работать на таких колонках и при более высоких температурах в режиме программирования, используя более чувствительные шкалы. [c.279]

    При динамическом модифицировании в элюент постоянно добавляют специальные вещества в небольшом количестве (в концентрациях порядка 0,001 М). Данные вещества преимущественно адсорбируются на поверхности адсорбента и изменяют химическую природу поверхности. Анализируемые вещества чаще всего сильно и специфически взаимодействуют с этими специальными веществами на поверхности адсорбента, при этом удерживание будет определяться кроме межмолекулярных ван-дер-ваальсовых взаимодействий и другими видами взаимодействия (вещество — адсорбент), в частности ионными, донорно-акцеп-торными, комплексообразующими. [c.314]

    А. А. Исирикян. Проблема химической природы поверхности адсорбентов имеет два направления первое — это химия естественной поверхности твердого тела, генетически связанной с химическим составом и структурой объемной фазы и второе — природа химически модифицированной поверхности, искусственно создаваемой в результате химических реакций с поверхностными атомами твердого тела. Хотя второе направление более многообразно и связано со специфическими трудностями, оно уступает первому по важности значения для адсорбции и катализа вообще и широкого круга научно-технического приложения. К сожалению, в работе Неймарка основное внимание было уделено химии модифицированной поверхности. [c.89]


Смотреть страницы где упоминается термин Поверхность адсорбента модифицирование: [c.169]    [c.77]    [c.328]    [c.352]    [c.297]    [c.352]    [c.341]    [c.205]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбент носитель, адсорбционное модифицирование поверхност

Адсорбент химическое модифицирование поверхности

Адсорбенты с модифицированной поверхностью

Адсорбционное модифицирование поверхности адсорбентов

Изменение химической природы поверхности адсорбентов (модифицирование адсорбентов)

Модифицирование поверхности адсорбента химическими реакциями

Поверхность адсорбента

Поверхность адсорбента поверхностях

Цели и возможности адсорбционного модифицирования поверхности адсорбента

Щербакова. Химическое модифицирование поверхностей адсорбентов



© 2025 chem21.info Реклама на сайте