Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связывание гидрофобное

    С другой стороны, эти ферменты сильно различаются по специфичности их действия. Так, сериновые протеазы а-химотрипсин и эластаза осуществляют гидролиз пептидной связи, образованной аминокислотой, содержащей в положении гидрофобную боковую группу R при этом специфичность а-химотрипсина определяется объемным гидрофобным радикалом в молекуле субстрата (типа боковой группы фенилаланина, триптофана), а для эластазы — метильной группой аланина. Механизм наблюдаемой специфичности обусловлен весьма незначительными различиями в строении активных центров этих двух ферментов. По данным рентгеноструктурного анализа, в активном центре а-химотрипсина имеется довольно вместительный гидрофобный карман , где связывается ароматическая боковая группа гидролизуемого пептида (рис. И, а ср. с рис. 9). В активном центре эластазы размеры сорбционной области, где происходит связывание метильной группы субстрата (рис. 11, б), намного меньше, чем в случае а-химотрипсина. Это вызвано тем, что вместо Gly-216 и Ser-217 см. рис. 9) в соответствующих положениях эластазной пептидной цепи расположены более объемные остатки треонина и валина [3]. [c.35]


    Постоянство Е ДЛЯ смесей полярных веществ в исследованном интервале температур подтверждает отсутствие заметных изменений в структуре полимера после температурной обработки мембраны. И тем не менее резкое изменение наклона линии для водного раствора толуола обусловлено существенным изменением предэкспоненты Со- Это, по-видимому, происходит по следующим причинам. В соответствии с правилом уравнивания полярностей Ребиндера [221] происходит преимущественная сорбция из раствора на поверхности полимера молекул неполярного компонента и их связывание с гидрофобными частями полимера дисперсионным взаимодействием. Повышение температуры увеличивает вероятность столкновения неполярных молекул и образования [c.185]

    До сих пор ничего не говорилось о специфичности ферментов. Если трипсин, химотрипсин и эластаза обладают идентичным каталитическим механизмом, то чем они отличаются друг от друга Ответ заключается в том, что они селективны к характеру боковой цепи, следующей за той, в которой они разрывают пептидную связь. В уравнениях (21-1)-(21-3) соответствующие радикалы обозначены К и находятся непосредственно перед карбонильной группой связи, подлежащей разрыву. Каждый из трех рассматриваемых ферментов имеет на своей поверхности карман специфичности , в который входит указанный радикал при связывании субстрата. Этот карман специфичности в трипсине длинный и глубокий, с отрицательным зарядом на дне от ионизованной аспарагиновой кислоты (рис. 21-19, а). Благодаря этому трипсин благоприятствует разрыву белковой пептидной цепи по связи, следующей за положительно заряженными радикалами лизина или аргинина. В химотри тсине карман специфичности шире (рис. 21-19, б) и образован исключительно гидрофобными радикалами, поэтому химотрипсин благоприятствует разрыву пептидной связи, следующей за объемистым ароматическим радикалом, как, например, [c.322]

    Основное назначение дорожных битумов — связывание, склеивание частиц минеральных материалов, придание им гидрофобных свойств, заполнение пространства между их частицами. Поэтому от качества битумов зависят прочность и долговечность асфальтовых дорожных покрытий. Дорожные битумы по предъявляемым в настоящее время требованиям [6, 7, 8] должны  [c.160]

    В качестве катализатора процесса гидролиза тетраэтоксисилана применяли различные минеральные кислоты, оказывающие также конденсирующее действие на водоотталкивающий слой, отверждение которого при 20 2° С заканчивается через 24—48 ч. Одновременно происходило и химическое связывание гидрофобного покрытия со свободными гидроксильными группами подложки (т. е. слоя частично этерифицированной поликремниевой кислоты). [c.194]


    Роль фермента заключается в том, что он предоставляет поверхность, к которой может прикрепляться тот или иной субстрат (молекула, подвергаемая воздействию на поверхности), и облегчает образование или разрыв связей в этой молекуле. Место на поверхности фермента, проявляющее такую активность, называется активным центром фермента. Фермент выполняет две функции распознавание и катализ. Если фермент будет без разбора связывать каждую оказавшуюся вблизи молекулу, то лишь небольшая часть времени израсходуется на катализ реакции, для которой предназначается данный фермент. Но фермент окажется точно так же бесполезным, если, связывая нужную молекулу, он не будет способствовать образованию или разрыву в ней надлежащих связей. Распознавание ферментами своих истинных субстратов осуществляется при помощи расположенных определенным образом в активном центре фермента боковых аминокислотных групп, способных взаимодействовать с молекулой субстрата электростатически, либо в результате образования водородных связей или же притяжения гидрофобных групп. Такой отбор молекул путем связывания с ферментом называется его специфичностью. [c.317]

    Требования, предъявляемые к битумам, особенно дорожным, весьма разнообразны. Основное назначение дорожных битумов — связывание, склеивание частиц минеральных материалов (щебня, песка), придание им гидрофобных свойств, заполнение пространств [c.378]

    Связанные молекулы (или ионы) некоторым образом ориентированы в мицелле. Так, гидрофильные группы молекул (такие как ОН, СООН, С=0, МНг) стремятся сохранить при связывании контакт с водой и поэтому они локализуются в поверхностном слое гидрофобные фрагменты связанных молекул расположены, как правило, в ядре мицеллы. [c.116]

    Весьма сильной сольватацией объясняли и отличия других свойств растворов полимеров и типичных гидрофобных золей. Высокую вязкость растворов полимеров объясняли либо энергетическим связыванием растворителя, либо его иммобилизацией в мицеллах полимера. Более быстрое возрастание осмотического давления в растворах полимера с увеличением концентрации вещества, чем это требуется по линейному закону, также интерпретировали, исходя из того, что в этих растворах растворитель частично связывается полимером и в результате этого увеличивается отношение числа частиц дисперсной фазы к числу [c.433]

    Впервые получено экспериментальное термодинамическое подтверждение клатратообразования при связывании гидрофобных органических соединений твердыми гидратированными белками. [c.153]

    В регуляции скорости важную роль могут играть аминокислотные остатки, окружающие координационный центр. Белок может ускорить реакцию путем связывания субстрата вблизи металла в предравновесном состоянии, что приведет к увеличению времени контакта, или путем более благоприятной ориентации субстрата по отношению к металлу. В этом отчасти состоит механизм, удерживающий ион НОг вблизи активного центра (см. выше), который способствует ускорению реакций Ре -каталазы и Ре -пероксидазы с перекисью водорода (разд. 8.6). Порфириновый лиганд также может играть определенную роль в связывании гидрофобных субстратов. Связывание субстратов белком и лигандами, вероятно, должно быть довольно слабым и происходить в зависимости от природы субстрата при участии водородных связей, электростатических или вандерваальсовых взаимодействий. Очевидное условие протекания реакций, в которых участвуют несколько активных центров, состоит в том, чтобы эти центры находились вблизи друг друга. Так, по всей вероятности, осуществляется фиксация азота, для которой требуется один активный центр (по-видимому. [c.242]

    Нашими исследованиями установлено, что процессы гидрофобизации материалов, содержащих группы ОН, полиалкилгидросилоксанами протекают и при полном отсутствии кислорода и других окислителей, а также, что кремнийорганические полимеры, не содержащие реакционноспособных функциональных групп, не образуют устойчивых водоотталкивающих покрытий на текстильных тканях. В пользу химического связывания гидрофобных кремнийорганических покрытий с целлюлозными материалами свидетельствует и тот факт, что эти покрытия оказываются устойчивыми лишь на обезжиренных и отбеленных тканях. Хлопчатобумажные и льняные ткани, у которых гидроксильные группы целлюлозы экранированы пектинами, жирами, смолами, гидрофобизуются значительно хуже, а покрытия на их поверхности оказываются менее устойчивыми. [c.205]

    Участие различных видов сил взаимодействия подтверждает и изучение химического строения активного центра антигаптенных антител. Так, связывание отрицательно заряженного гаотена 3-нитро-4-окси-5-йодофенил-ацетата происходит за счет включения в комбинационный участок антитела положительно заряженного аргинина [102], а связывание гидрофобной динитрофенильной группы — за счет гидрофобного тирозина [139]. Более [c.47]


    Б пользу химического связывания гидрофобных кремнеорганических покрытий с целлюлозными материалами говорит и тот факт, что эти покрытия оказываются устойчивыми лишь на отваренных и отбеленных тканях. Суровые хлопчатобумажные, а также льняные ткани, в которых гидроксильные группы целлюлозы экранированы ее спутниками (пектины, н<иры, воски, смолы и др.), гидрофибизуются значительно хуже, а образующиеся покрытия оказываются менее устойчивыми. [c.331]

    Последовательность аминокислот, или первичная структура фермента, определяет вторичную и третичную (трехмерную) структуры, т. е. свертывание пептидной цепи в макромолекуляр-ную глобулу, имеющую некоторую определенную полость для взаимодействия с субстратом или, если необходимо, с кофермен-том. Ферменты обладают сложной и компактной структурой, в которой боковые цепи полярных аминокислот, находящиеся на поверхности молекулы, направлены к растворителю, а боковые цепи неполярных в общем случае ориентированы внутрь молекулы, от растворителя. Трехмерная структура поддерживается большим количеством внутримолекулярных нековалентных взаимодействий аполярной, или гидрофобной, природы, а также благодаря ионным взаимодействиям, дисульфидным мостикам, водородным связям, иногда солевым мостикам [57]. Гидрофобные взаимодействия имеют наиболее важное значение, поскольку они, вероятно, ответственны за большую величину свободной энергии связывания, которая наблюдается при ферментсубстратных взаимодействиях. [c.202]

    В результате полость акцептора оказывается с одной стороны экранированной и по этой причине более гидрофобной и неглубокой, т. е. образуется ацилциклодекстрин с дном , которое обеспечивает более мелкое погружение субстрата при связывании. Далее были изучены следующие превращения (табл. 5.1)  [c.305]

    Комияма и Бендер [178] представили еи е одно экспериментальное доказательство важности гидрофобного связывания при комплексообразовании а- и р-циклодекстринов с 1-адамаитанкар- [c.306]

    Длинные алкильные цепи с каталитической группой иа одном конце могут обеспечить достаточное количество гидрофобных центров связывания с такими субстратами, как эфиры жирных кислот, чтобы увеличивать скорость их реакций (наблюдалось 10-крагпое увеличение скорости ири pH 8 в трис-буфере и 25°С). [c.312]

    Образуются мицеллы, но при этом не происходит большого увеличения скорости при ассоциации алкильных цепей с мономерным участком связывания в соотношении 1 1. Следовательно, серьезная проблема заключается в том, что эти молекулы мало растворимы в воде, а потому имеют тенденцию агрегировать с образованием мицелл. Работы следует вести при концентрации значительно ниже ККМ, которая для данной системы равна 10 моль/л. Кроме того, конформация цепи меняется даже в вытянутом состоянии. Посколысу алкильные цепи очень гибкие и никогда не образуют сильно гидрофобной области, необходимо [c.312]

    Наблюдаемая скорость характерна для реакции истинно второго порядка, что указывает на стехиометрию 1 1. Из-за плохой растворимости кинетика насыщения не измерялась ни / кат, ни Кт не были установлены удалось оценить лишь константы скорости второго порядка. Пространственная структура образующегося в результате продуктивного связывания тетраэдрического соединения свидетельствует о том, что между субстратом и стероидными кольцами возможно эффективное гидрофобное связывание. Достоинством этой системы является малая конформационная нодвих<ность как субстрата, так и катализатора. [c.314]

    С этой целью в группе Гутри планируется синтезировать сте-роидимидазольный дпмер путем соедпиеиия двух кетонных аналогов ароматическим диамином. Предполагается, что в полученной трехмерной молекуле субстрат будет проглочен димерным ката-лизат< гром, в пастп которого гидрофобное связывание возникает уже с двух сторон реакционного центра субстрата. Пока получено бис(11)-кетопроизводное, и для него наблюдалось 1000-кратное увеличение скорости ио сравнению со скоростью реакции, катализируемой имидазолом. [c.316]

    В общем случае значение а — это характеристика сорбционной способности активного центра данного фермента. Если а <С 1 (как, например, в рассмотренном катализе (3-галактозидазой), то субстратная группа К, по-видимому, либо погружаетгя (переносится из воды) в органическую среду белка не полностью, либо связывание ее требует термодинамически невыгодных затрат на конформационное изменение структуры того или другого реагента. Гидрофобное ферментсубстрат-ное взаимодействие может быть термодинамически более выгодным, чем это предполагает простая экстракционная модель (где а= 1). В этом случае активный центр должен содержать локальный участок с относительно невыгодной поверхностной энергией пограничного слоя белок — растворитель например, с гидрофобными боковыми группами [c.44]

    Глобула химотрипсина содержит лишь один комплексующий центр, способный быстро и обратимо сорбировать углеводородные молекулы, — это активный центр фермента [73]. Гипотеза о существовании гидрофобной области в активном центре химотрипсина была выдвинута в начале 60-х годов на основании исследования ингибирующих свойств большого числа производных бензола, нафталина и других ароматических соединений [74—76]. Эта гипотеза находит подтверждение в том, что связывание с активным центром некоторых конкурентных ингибиторов, содержащих хромофорные группы, приводит к сдвигу их спектра в длиннойолновую область [77—79]. Анализируя величину спектрального сдвига, Кэллос и Эвейтис [80] пришли к выводу, что активный центр фермента по величине диэлектрической постоян- [c.138]

    Алифатические обратимые конкурентные ингибиторы. Как видно из рис. 37, сррбционный участок активного центра малоспецифичен по отношению к структуре алифатической цепи в молекуле ингибитора (алканолы). Независимо от того, является ли алифатическая цепь нормальной или разветвленной, эффективность обратимого связывания алканола КОН на активном центре определяется валовой гидрофобностью группы К. А именно, величина lg i, характеризующая прочность комплекса, возрастает линейно (с наклоном, близким к единице) со степенью распределения 1 Р этих соединений между водой и стандартной органической фазой (н-октанол). Наблюдаемая при этом величина инкремента свободной энергии переноса СНа-группы из воды в среду активного центра равна приблизительно —700 кал/моль (2,9 кДж/моль) (для низших членов гомологического ряда). Эта величина близка к значению инкремента свободной энергии, которое следует из известного в коллоидной химии правила Дюкло—Траубе [90—92] и характерна для свободной энергии перехода жидкой СНа-группы из воды в неводную (гидрофобную) среду [85]. Все это позволяет рассматривать гидрофобную область активного центра химотрипсина как каплю органического растворителя, расположенную в поверхностном слое белковой глобулы. Эта капля либо адсорбирует гидрофобный ингибитор из воды на поверхность раздела фаз, либо, будучи расположенной несколько углубленно, полностью экстрагирует его. С точки зрения микроскопической структуры гидрофобной области правильнее было бы рассматривать ее как фрагмент мицеллы, однако такая детализация представляется излишней, поскольку известно, что свободная энергия перехода н-алканов из воды в микроскопическую среду мицеллы додецилсульфата слабо отличается от свободной энергии выхода тех же соединений из воды в макроскопическую жидкую неполярную фазу [93]..  [c.142]

    Механизм ъ инётической специфичности химотрипсина. Размер химически инертного фрагмента К в субстратной молекуле оказывает влияние не только на связывание субстрата ферментом, но, что более удивительно, иа кинетику химических стадий. Скорость как стадии ацилирования (Аг), так и гидролиза промежуточного ацилфермента [см. уравнение (4.28)] возрастает при увеличении гидрофобности фрагмента Н- Количественное описание кинетической специфичности дает уравнение [c.154]

    В согласии с механизмом (4.40) субстратоподобный ингибитор действительно вытесняет из активного центра несколько молекул воды, как это было обнаружено при рентгеноструктурном анализе кристаллического химотрипсина [123]. Однако этот механизм не согласуется с данными по влиянию среды на гидрофобное фермент-субстратное взаимодействие (см. 4 этой главы). Кроме того, механизм (4.40) противоречит тому, что двойной выигрыш свободной энергии экстракции реализуется лишь в переходном состоянии химической реакции [см. уравнение (4.39)], в то время как в комплексе Михаэлиса вклад гидрофобного фермент-субстратного взаимодействия меньше [см. уравнение (4.29)]. Иными словами, в химотрипсиновом катализе не вся потенциальная свободная энергия сорбции, которую предполагает модель (4.40), равная 2АСэкстр, реализуется в виде прочного связывания субстрата с ферментом. Из диаграммы, представленной на рис. 44, видно, что в комплексе Михаэлиса (или ацилферменте) реализуется в виде свободной энергии связывания E-R лишь инкремент свободной энергии сорбции, отражающий перенос субстрата из воды в неводное окружение (в среду белковой глобулы), равный АО кстр [см. также уравнение (4.29)]. Для объяснения этих фактов следует допустить, что гидрофобное фермент-субстратное взаимодействие идет в две стадии 1) образование фермент-субстратного комплекса протекает по механизму (4.19), который не противоречит данным по солевому эффекту (на их основании он был и предложен), и термодинамические закономерности его согласуются с уравнением (4.29). Этот механизм также предполагает вытеснение нескольких молекул воды из [c.155]

    На стадии 2 в механизме (4.41) происходит фактически более эффективное термодинамически выгодное гидрофобное взаимодействие между ферментом и субстратом. Однако этот процесс не приводит к более про чному связыванию субстрата на ферменте, поскольку сопровождающие его термодинамически невыгодные конформационно-сольвата-ционные изменения в белке протекают полностью за счет потенциальной свободной энергии сорбции (гидрофобного взаимодействия). [c.156]

    Таким образом, зависимость термодинамических величин q и Ст от л и рассмотренные ИК спектры указывают на начальную фиксацию кислорода молекулы воды на катионах и связывание с ионами кислорода решетки цеолита одного водорода этой молекулы (высокая теплота адсорбции, низкая теплоемкость и узкая полоса валентных колебаний другой свободной группы ОН молекулы воды). Затем идет фиксация молекул воды между катионами К" , что обуславливается располол<ением, концентрацией и гидрофобным характером этих больш-их катионов (см. рис. 2.9). Когда эти возможности исчерпаны, теплота адсорбции падает, а теплоемкость возрастает в соответствии с разрывом при нагревании водородных связей в некоторой части образованных при адсорбции воды ассоциатов. Дальнейший рост q и падение Ст обусловлены, в основном, образованием водородно-связанной сетки ассоциатов воды, фиксированной на поверхностях полостей этого цеолита. Когда образование этих ассоциатов завершено, q снова падает, а Ст растет. Наконец, перестройка сетки ассоциатов при заполнении центральных частей полостей цеолита ведет снова к росту q (уже небольшому) и падению Ст до величины, довольно близкой к теплоемкости жидкой воды. Изменения в инфракрасном спектре при адсорбции воды цеолитом KNaX подтверждают, что с ростом происходит поочередное усиление и ослабление водородной связи. Для цеолита NaX этого не наблюдается. [c.44]

    Первый путь основан на связывании ионов рубидия и цезия в нейтральные, крупные, гидрофобные молекулы с небольшой степенью ионизации (дипикриламинаты, полииодиодааты, тетраиодвисмутаты, тетрафенилбораты, гексафторофосфаты и другие соединения, легко извлекаемые полярными органическими растворителями из водной фазы). Этот путь уже нашел промышленное применение при извлечении рубидия и цезия из радиоактивных растворов (см. выше). Основной его недостаток с увеличением кислотности и концентрации щелочных металлов в водном растворе меньше извлекается рубидия и цезия. [c.146]

    На этом примере видны некоторые важнейшие черты, свойственные большому числу ферментов. Во-первых, катализатор имеет как бы два центра—связывающий (контактный) и собственно каталитический. Один из них, представленный в рассмотренном случае протонированной гуанидиновой группой и тремя гидрофобными радикалами, обеспечивает образование комплекса фермент — субстрат (связывание субстрата ферментом), в результате чего расщепляемая связь направляется на каталитический центр. Собственно каталитический центр представлен в рассмотренном случае ионом цинка и оксигруппой тирозина. [c.326]


Смотреть страницы где упоминается термин Связывание гидрофобное: [c.316]    [c.331]    [c.232]    [c.233]    [c.83]    [c.264]    [c.294]    [c.301]    [c.307]    [c.310]    [c.312]    [c.315]    [c.140]    [c.74]    [c.84]    [c.13]    [c.474]    [c.484]    [c.17]   
Растворители в органической химии (1973) -- [ c.23 ]

Окислительно-восстановительные полимеры (1967) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрофобное связывание Гидрофобное взаимодействие

Связывание

Связывание флуоресцентных меток с гидрофобными участками белковой глобулы



© 2025 chem21.info Реклама на сайте