Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловой эффект процесса

    Кроме фазовых переходов первого рода, существуют также фазовые переходы второго рода. Для них характерно не только равенство изобарных потенциалов, но и равенство энтропий и объемов сосуществующих в равновесии фаз, т. е. отсутствие теплового эффекта процесса и изменения объема при температуре превращения  [c.143]

    При контроле расчетов теплового эффекта процесса окисле- ния нефтяных остатков воздухом нужно учитывать, что величина этого эффекта меньше, чем теплота полного сгорания остатка с образованием воды и диоксида углерода. Теплота сгорания может быть определена из теплотворной способности нефтепродукта и количества воздуха, необходимого для сжигания. Так, теплотворная способность мазутов составляет в среднем 42 000 кДж/кг, объем воздуха для их сжигания в стехио-метрических условиях—10,1—10,3 м /кг [52] следовательно,, тепловыделение при сжигании мазутов и близких к ним по элементному составу гудронов составляет 14 ООО кДж на 1 кг Ог. [c.47]


    Стремление системы к понижению потенциальной энергии назо-зем энергетическим или энтальпийным фактором. Количественно )та тенденция системы выражается через тепловой эффект процесса, г. е. значением АЯ. [c.172]

    Особенность совмещенных процессов состоит в том, что, помимо фазового равновесия, необходимо рассматривать и химическое равновесие. А это значит, что необходимо исследовать кинетику возможных химических реакций в условиях, создаваемых при ректификации. Следует заметить, что при медленных химических реакциях и при низких тепловых эффектах процесс практически не отличается от обычной ректификации. Имеющееся отличие будет сказываться лишь при большом времени пребывания реагентов и проявляться в накоплении продуктов побочных реакций в продуктах разделения. При наличии же больших тепловых эффектов и скоростей реакций могут быть совершенно неожиданные результаты. Так, при экзотермической реакции с большим тепловым эффектом возможно полное испарение потока жидкости в зоне реакции и, наоборот, при эндотермической — захолаживание жидкости и конденсация парового потока. Поэтому при попытке совмещения ректификации и реакции важнейшей задачей является обеспечение условий нормального функционирования процесса, т. е. его устойчивости и управляемости. Отсюда следует, что хеморектификация протекает в более жестких границах изменения основных технологических параметров. Выход за допустимые границы (например, по теплоотводу) может привести к взрыву в случае сильно экзотермической реакции и останову процесса массообмена между потоками пара и жидкости в случае эндотермической реакции. Интересным моментом является то, что возникает проблема рационального использования выделяемого тепла внутри схемы, например, на образование парового потока с целью снижения энергетических затрат на ведение процесса. [c.365]

    Реакции конденсации и поликонденсации многих химических вешеств сопровождаются значительным тепловым эффектом. Процессы поликонденсации по термодинамическим характеристикам к свойствам получающихся высокомолекулярных продуктов сходны с процессами полимеризации. Поэтому аварии, возникающие пра проведении процессов конденсации и поликонденсации, имеют аналогичный характер. [c.345]

Таблица 2. Значения теплового эффекта процесса каталитического риформинга для различных видов сырья [3] Таблица 2. Значения <a href="/info/939643">теплового эффекта процесса</a> <a href="/info/20515">каталитического риформинга</a> для <a href="/info/100786">различных видов</a> сырья [3]

    ДО 24 000° К и захватывает область первой и второй ступеней ионизации атомов углерода и кислорода. Рис. 33, б показывает, что при повышении температуры сначала молекулы СОг диссоциируют на СО и О2, далее молекулы О2 разлагаются на свободные атомы. При данном давлении уже к 3 000° К в равновесной системе почти не остается молекул СО2 и О2 и она состоит практически, полностью из молекул СО и атомов кислорода. Примерно с 4 000° К начинается разложение молекул СО. Дальнейшее повышение температуры приводит к отделению от атомов углерода, а затем и от атомов кислорода сначала одного электрона, а при более высоких температурах и другого электрона. Образование плазмы в этой системе при указанном давлении начинается примерно с 5000° К. Процессы термической ионизации атомов, как и процессы термической диссоциации молекул, являются обратимыми термодинамическими процессами. Для них могут быть определены соответст-вуюш,ие тепловой эффект процесса и константа равновесия, а также зависимость их от температуры и пр. [c.120]

    Образцы нагревали со скоростью 10°С/мин в интервале температур 20—1000°С. В первой серии навески образцов составляли 1000, 1330 и 1400 мг, во второй — 100 мг. В каждом эксперимепте одновременно записывали следующие параметры изменение температуры образца — кривая Г изменение массы навески — кривая ТГ] изменение скорости изменения массы — дифференциальная кривая ДТГ и характеристика тепловых эффектов процессов физико-химических превращений, происходящих в образцах — дифференциальная кривая ДТА. Результаты первой серии представлены на рис. 13. [c.24]

    Все основные реакции протекают с отрицательным тепловым эффектом (с поглощением тепла), причем суммарный тепловой эффект процесса определяется глубиной превращения углеводородов. В ходе процесса температура (480—520 °С) снижается, и дальнейшего превращения сырья не происходит. Поэтому для полного превращения сырья необходим промежуточный подогрев смеси непревращенного сырья и продуктов реакции и использование нескольких последовательных реакторов (обычно трех). [c.41]

    Поэтому общий тепловой эффект процесса равен  [c.367]

    Небольшой тепловой эффект процесса. [c.89]

    Если извес ша константа диссоциации при нескольких температурах, то по уравнению изобары Вант-Гоффа можно рассчитать тепловой эффект процесса диссоциации  [c.272]

    Закон Гесса и его следствия не могут быть использованы для расчета тепловых эффектов процессов, если мы не условимся, какой смысл вкладывать в понятия теплота образования и теплота сгорания вещества. [c.165]

    В нефтепереработке основная масса процессов сопровождается многочисленными химическими реакциями, протекающими с выделением или поглощением тепла. Тепловой эффект процесса слагается из теплот этих реакций. Для технологических расчетов реакционных устройств тепловые, эффекты процессов переработки нефти и газа либо рассчитывают по закону Гесса либо определяют путем обследования реакционных устройств промышленных установок. Последний метод более точен. [c.78]

    Для большинства физико-химических расчетов необходимо знать теплоемкости веш,еств, участвуюш,их в процессе, тепловые эффекты процессов растворения, фазовых превращений и химических реакций. Измерение этих величин может быть произведено при помощи различных экспериментальных методов. При температурах, близких к комнатной (20—50 ), широко применяется калориметрический метод. [c.129]

    По закону Гесса тепловой эффект процесса равен сумме теплот образования полученных продуктов за вычетом суммы теплот образования исходных веществ  [c.78]

    Радиоактивностью называется снособность атомов неустойчивых и,зотопов некоторых элементов к самопроизвольному лучеиспусканию. Последнее обладает рядом общих свойств, которые служат для его качественного и количественного определения. Важн( й иими свойствами радиоактивного излучения являются а) действие его на фотографическую эмульсию, вызывающее ее почернение б) ионизация газов, т. е. возбуждение в них электро-нрово.цности в) высокий тепловой эффект процесса, отличающий его от обычных химических превращений г) возбуждение свечения некоторых веществ, напрнмер 2п.Я д) значительная проникающая способность и др. [c.61]

    Известно, что согласно принципу Ле Шателье влияние изменения температуры на равновесие определяется знаком и величиной теплового эффекта процесса. Почему влияние температуры обусловлено энтальпией процесса, а не энтропийным чле-но-м TAS, ведь повышение температуры соответствует как росту самого члена TAS, так и в большинстве случаев росту энтропии рассматриваемой системы. [c.46]

    Qnp — тепловой эффект процесса  [c.182]

    Прп выводе уравнений материального баланса для динамических режимов функционирования абсорбционной колонны используем следующие допущения 1) количество газа над тарелкой мало по сравнению с количеством находящейся на ней жидкости 2) эффективность тарелки 100% 3) соотношение между равновесными составами газа и жидкости выражается уравнением У = тХп + + 6 4) количества жидкости на всех тарелках одинаковы 5) тепловым эффектом процесса абсорбции пренебрегаем. [c.189]


    По данным [54], тепловой эффект процесса коксования зависит от характеризующего фактора К и равен  [c.182]

    Тепловой эффект процесса ранен [c.187]

    Количество выделенного (или поглощенного) тепла называют тепловым эффектом процесса. Чтобы этой величине придать полную определенность, надо условиться об ее знаке, выбрать единицы измерения, установить, к какому количеству вещества ее следует относить, и договориться о режиме протекания процесса. Решение вопроса о знаке и единицах измерения не вызывает затруднений, хотя в отношении первого могут быть два, а в отношении второго — очень много вариантов. Примем положитель-нь1 тепловой эффект эндотермических процессов условимся относить тепловой эффект к 1 моль вещества (обычно продукта реакции) и выражать его в килокалориях. [c.9]

    ТЕПЛОСОДЕРЖАНИЕ. УДЕЛЬНЫЙ ТЕПЛОВОЙ ЭФФЕКТ ПРОЦЕССА. ТЕПЛОТВОРНОСТЬ ТВЕРДЫХ И ЖИДКИХ ТЕЛ [c.733]

    По тепловому эффекту процесса, осуществляемого в печи  [c.33]

    В дальнейшем ради краткости наряду с термином тепловой эффект (процесса) будет употребляться и термин теплота (процесса), [c.162]

    С целью осуществления процесса была предложена и рекон струкция типовой установки Л-35/11-300 каталитического рифор минга, заключающаяся в дополнении блока гидроочистки еще од ним реактором и переводе этого блока на режим гидрокрекинга а также в установке дополнительной печи и частичной модерниза ции оборудования. Проектная производительность установки по сырью — 370 тыс. т в год [17]. Особенностью реконструкции явля ется относительно невысокое давление гидрокрекинга (4,5 МПа) позволяющее использовать реакторы гидроочистки. Прочие пара метры прюцесса температура 340—380 °С, кратность циркуляции водородсодержащего газа 1000 м /м , объемная скорость подачи сырья 2,2 ч рассчитанный тепловой эффект процесса — около 250 кДж/кг. Итоговый материальный баланс близок к приведенному ранее — выход товарного бензина АИ-93 (без добавки ТЭС) составляет около 70% на исходное сырье. Гидрокрекингу подвергают фракцию 130—180 °С прямогонного бензина, риформингу — фракцию 85—180 °С после гидрокрекинга. [c.70]

    Закон Гесса широко применяется при различных термохимических расчетах он дает возможность вычислить тепловые эффекты процессов, для которых экспериментальные данные отсутствуют, а во многих случаях — и для таких, для которых они не могут быть измерены в нужных условиях, или когда процессы еще не осуществлялись. Это относится как к химическим реакциям, так и к процессам растворения, испарения, кристаллизации, адсорбции и др. Однако, применяя данный закон, следует строго соблюдать условия, лежащие в его основе. [c.192]

    Вопросы строения вещества нашли отражение не только при описании энергетики процессов, т. е. в первой части пособия, но и в других его частях. Уделено большое внимание и периодической системе элементов Д. И. Менделеева. К ней мы обращаемся и при рассмотрении тепловых эффектов процессов, и при исследовании реакционной способности веществ, и при анализе свойств растворов, а также при изложении некоторых вопросов, связанных с химией элементов (часть V). [c.5]

    Как быть в тех случаях, когда надо знать тепловой эффект процесса при иных температурах и давлениях В первом приближении можно принять, что изменения [c.13]

    Тепловой эффект процесса рассчитывают обычно, исходя из закона Гесса. [c.90]

    Тепловой эффект процесса кристаллизации пропорционален изменению концентрации раствора, что выражается уравнением [c.231]

    При такой системе знаков тепловым эффектом процесса называют сумму поглощаемой теплоты и всей работы, выполненной окружающей средой над данной системой, за вычетом работ-ы внешнего давления. Очевидно, что все величины должны быть выражены в одинаковых единицах. [c.182]

    Гидролиз диорганодихлорсиланов — очень быстрая реакция. Даже при —45 "С в водном ацетоне константы скорости гидролиза диметилдихлорсилана (ДДС) равны 95 мин" для первого и 25 МИН" для второго атома хлора [26]. При массовом отношении ДДС вода = 1 0,14 (эквимольном) реакция идет с полным выделением газообразного НС1 и поглощением 30,9 кДж теплоты на 1 моль ДДС (240 кДж на 1 кг ДДС). При массовом отношении 1 1 (мольном 1 7), благодаря полному растворению НС1 с образованием 40%-ной соляной кислоты, суммарный тепловой эффект положителен (116 кДж/моль или 896 кДж/кг). Гидролиз с частичным выделением газообразного НС1 при массовом отношении 1 0,32 (мольном 1 2,3) идет без тепловых эффектов. Процессы с выделением газообразного НС1 сложнее в аппаратураом оформлении, чем процессы с его полным поглощением, и приводят к образованию более вязких к более кислых гидролизатов. ---- [c.469]

    Перечисленные условия проведения процесса отмывки реализуются в аппарате непрерывного действия, состоящем из двух последовательно соединенных колен (вертикального и наклонного) трубчатого типа [7]. Принцип работы аппарата непрерывного действия для осуществления процесса отмывки гранул сульфокатионита состоит в следующем. Ионит с вибролотка направляется в загрузочное устройство вертикального колена аппарата отмывки. В верхнюю часть вертикального колена аппарата подается карбонат аммония в весовом соотношении к иониту 1 1. Смешиваясь с карбонатом аммония, ионит из вертикального колена попадает в наклонное колено аппарата, откуда после контакта с раствором карбоната аммония при помощи шнека выводится из аппарата в ванну с циркулирующей деминерализованной водой, где окончательно отмывается от сульфата и карбоната аммония. По мере насыщения солями аммония вода выводится из ванны и1 используется для приготовления насыщенного раствора карбоната аммония. В конце наклонного колена в аппарат дозируется насыщенный раствор карбоната аммония, который, контактируя в наклонном колене и нижней части вертикального колена с ионитом, нейтрализует и замещает серную кислоту, превращаясь в сульфат аммония, после чего выводится в вертикальном колене в нейтрализатор. Все детали аппарата, контактирующие с реакционной массой, изготавливаются из кислотостойкой стали. Для поддержания температурного режима оба колена аппарата снабжены рубашками. Использование в качестве отмывающего агента раствора карбоната аммония и добавление соли карбоната аммония позволяет нейтрализовать серную кислоту и уменьшить тепловой эффект процесса отмывки, так как растворение и разбавление карбоната и сульфата аммония сопровождается поглощением тепла. [c.392]

    И, иакоиеЦ ио уравнению AG = AH — TAS можно рассчитать изменение энтроиии, если известны значения изобарно-изотерми-ческого потеицнала AG° и тепловой эффект процесса диссоциации АИ°  [c.272]

    Фазовые переходы. Тепловые эффекты процессов перехода из олмаю агрегатного состояния в другое обычно значительно меньше таковых для химических реакции. В частности, теплоты парообразования (при 1.01 кПа) имеют значения порядкд 40 кДж/моль (реже 100 и более кДж/моль), теплоты плавления, перехода из аморфного состояния в кристаллическое и превраше-ння одной модификации в другую — порядка 4—20 кДж/моль. Значения теплот фазовых переходов для ряда веществ приведены в табл. 2.2. Теплоты парообразования велики для тугоплавких (высококипящих) веществ. Так, для У(р=101 кПа) [c.169]

    Влияние температуры окисления гудрона на тепловой эффект процесса показано на рис. 3.12. Снижение теплового эффекта в интервале температур 200—300 °С соировож-содержания масел и понижением содержа- [c.210]

    Количество выделеннЪ.й (или поглощенной) теплоты называют тепловым эффектом процесса .  [c.162]

    Если надо определить тепловой эффект процесса при нестан- дартных температурах и давлениях, то в первом приближении можно принять, что изменения температуры и давления мало отражаются на величине АЯ. Малую чувствительность АЯ к изменению температуры можно показать иа примере реакции [c.167]

    Выясним теперь, как влияет температура на направление смещения равновесия в реакциях (I) и (IV). Определим вначале, [юльзуясь законом Гесса, тепловой эффект процесса (I). Для этого можно поступить двояко или от суммы теплот образования СО и Н О отнять теплоту образования СО2, или из теплоты сгорания Из вычесть теплоту сгорания СО. В результате получим величину ДЯ=—9,77 ккал/моль. Следовательно, нагревание будет сменить равновесие (1) влево, охлаждение — вправо (см. стр. 32) иными словами, с повышением температуры в смеси будет расти содержание окиси углерода и водяного пара, причем, так как ДЯ не очень велико, этот рост не будет значительным. [c.74]

    Обозначим Ql—тепло, отдаваемое теплоносителем илн отбираемое хладагентом Q2 — тепло, вносимое с реакционной массой Рз — тепловой эффект процесса — тепло, отводимое из аппарата с реакционной массой Ql, — тепло, расходуемое на нагревание материала аппарата (учитывается только для аппаратов периодического де11ствия) — потери. [c.90]

    Нередко тепловые эффекты процессов называются и просто теплотой процесса (теплота абразования, теплота сгорания, теплота испарения и т. п.). [c.183]


Смотреть страницы где упоминается термин Тепловой эффект процесса: [c.130]    [c.272]    [c.78]    [c.229]    [c.164]    [c.232]   
Смотреть главы в:

Основы технологических расчетов в нефтепереработке -> Тепловой эффект процесса

Основы технологических расчётов в нефтепереработке -> Тепловой эффект процесса

Промышленный синтез ароматических нитросоединений и аминов -> Тепловой эффект процесса

Основы технологических расчётов в нефтепереработке -> Тепловой эффект процесса

Промышленный синтез ароматических нитросоединений и аминов -> Тепловой эффект процесса


Краткий курс физической химии Изд5 (1978) -- [ c.179 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.164 ]

Курс физической химии Издание 3 (1975) -- [ c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные процессы тепловой эффект

Влияние качества сырья и условий окисления на материальный баланс процесса, его тепловой эффект, состав и свойства окисленных битумов

Занятие 2. Моделирование процесса с тепловым эффектом

Изобарный процесс тепловой эффект

Изотермический процесс тепловой эффект

Изохорный процесс тепловой эффект

Каталитические процессы тепловой эффект

Общее уравнение теплового баланса. Тепловой эффект процесса восстановления чугунной стружкой. Тепловой эффект процесса восстановления цинковой пылью. Тепловой эффект процессов восстановления сернистыми щелочами 5 37. Дальнейшая обработка полученных аминов

Общее уравнение теплового баланса. Тепловой эффект процесса хлорирования Поглощение хлористого водорода и хлора в процессах хлорирования

Общее уравнение теплового баланса. Тепловой эффект процессов диазотирования. Тепловой эффект процессов азосочетания. Тепловой эффект процессов нитрозирования Аппаратура процессов плавки и запекания

Общее уравнение теплового баланса. Тепловой эффект процессов плавления и запекания Аппаратура для дальнейшей обработки продуктов плавки и запекания

Общие понятия. Механизм абсорбции. Математическое обоснование абсорбции. Тепловой эффект сорбционных процессов. Основные случаи абсорбции Аппаратурное оформление процессов абсорбции

Определение тепловых эффектов процессов

Плавка и запекание тепловой эффект процессо

Сливаев. О взаимосвязи внутренних тепловых эффектов с эффективностью процесса ректификации

Сорбционные процессы тепловой эффект

Тепловой эффект и химическое равновесие основных реакций газогенераторного процесса

Тепловой эффект изохорно-изотермического процесса

Тепловой эффект очень медленного процесса измерение

Тепловой эффект процесса Триазолы

Тепловой эффект процесса атомизации

Тепловой эффект процесса гидрокрекинга

Тепловой эффект процессов азосочетания

Тепловой эффект процессов алкилирования

Тепловой эффект процессов аммонолиза

Тепловой эффект процессов восстановления сернистыми щелочами

Тепловой эффект процессов гидролиза

Тепловой эффект процессов диазотирования

Тепловой эффект процессов кислоты

Тепловой эффект процессов нейтрализации и высаливания

Тепловой эффект процессов нитровании

Тепловой эффект процессов нитрозирования

Тепловой эффект процессов плавления и запекания

Тепловой эффект процессов смещения и разбавления серной

Тепловой эффект процессов сульфирования

Тепловой эффект процессов сульфокислот

Тепловой эффект процессов химических процессов

Тепловой эффект процессов хлорирования

Теплосодержание. Удельный тепловой эффект процесса. Теплотворность твердых и жидких тел (табл

Термические процессы переработки нефтя ного сырья тепловой эффект

Уравнение Гиббса-Гельмгольца. Связь максимальной полезной работы с тепловым эффектом процесса

Химическая теория растворов Д. И. Менделеева. Тепловой эффект процесса растворения

Энергетика химических процессов. Элементы химической термодинамики Вычисление стандартных теплот образования веществ и тепловых эффектов химических реакций

Энергия также Тепловой эффект, Теплота, Энтальпия процесса

Энергия также Тепловой эффект, Теплота, Энтальпия химического процесса

Эффект тепловой

Эффект тепловой, Тепловой эффект

Эффект тепловой, химического процесс



© 2024 chem21.info Реклама на сайте