Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярографический ток диффузионный

    Было установлено, что электрокапиллярный максимум, потенциал полуволны и предельный полярографический диффузионный ток обнаруживают заметные изменения при определенной концентрации ПАВ в присутствии добавок электролитов. Эти [c.124]

    Средний полярографический диффузионный ток математически описывается уравнением Ильковича, простейшая форма которого имеет вид  [c.437]


    Полярографические диффузионные токи [c.63]

    Часто за ходом реакции удобно следить по изменению какого-либо параметра, связанного линейной зависимостью с концентрацией продукта С, как, например, поглощения света, электропроводности раствора, полярографического диффузионного тока или объема реагента, необходимого для титрования. В таких случаях нет необходимости устанавливать пропорциональность в единицах концентрации образовавшегося продукта С, как это делается в уравнении [c.106]

    Когда измеряют силу тока, раствор не перемешивают эти измерения соответствуют определению полярографического диффузионного тока. Точку конца титрования определяют по пересечению двух кривых. Разность потенциалов между электродами обычно соответствует 1 в в классическом титровании 0,5—2 в. [c.48]

    Исследования в области теории полярографического диффузионного тока. VI. Влияние ионной силы на константу диффузионного тока в отсутствии желатины. [Данные по Т1]. [c.142]

    К теории полярографического диффузионного тока. II. Диффузия небольшого количества ионов таллия в водных растворах КС1. [c.142]

    Неаддитивность полярографических диффузионных токов в смесях некоторых окислителей. (Данные о смесях Се (4) сОг]. [c.191]

    Кривая показывает, что до тех пор, пока приложенное напряжение не достигло некоторой определенной величины (см. стр. 428), сила тока остается постоянной, весьма близкой к нулю (остаточный ток). Но как только напряжение превысит эту величину, сила тока очень быстро возрастает с увеличением напряжения, и кривая круто поднимается вверх. Однако очень скоро возрастание силы тока снова прекращается и кривая переходит в прямую, параллельную оси абсцисс (предельный или диффузионный ток). Таким образом, вольт-амперная кривая имеет ступенчатый характер и называется полярографической волной . [c.452]

    Значения мд для небольших полярографических волн (с малой константой диффузионного тока) помещены в скобках. [c.499]

    На рис. 2.18 представлена полярографическая волна. При низких значениях потенциала (участок А), величина которого не достаточна для того, чтобы на рабочем микроэлектроде происходила электрохимическая реакция, через ячейку проходит очень незначительный остаточный ток, обусловленный, прежде всего, током заряжения двойного электрического слоя и присутствием в растворе электрохимически более активных, чем анализируемое вещество, примесей. При увеличении потенциала электрохимически активное вещество (называемое деполяризатором) вступает в электрохимическую реакцию на электроде и ток в результате этого резко возрастает (участок В). Это так называемый фарадеевский ток. С ростом потенциала ток возрастает до некоторого предельного значения, оставаясь затем постоянным (участок С). Предельный ток обусловлен тем, что в данной области потенциалов практически весь деполяризатор из приэлектродного слоя исчерпан в результате электрохимической реакции, а обедненный слой обогащается за счет диффузии деполяризатора из объема раствора. Скорость диффузии в этих условиях контролирует скорость электрохимического процесса в целом. Такой ток называют предельным диффузионным. Для того чтобы исключить электростатическое перемещение деполяризатора (миграцию) в поле электродов и понизить сопротивление в ячейке, измерения проводят в присутствии большого избытка сильного электролита, называемого фоном. Являясь электрохимически индифферентным, вещество фонового раствора может вступать в химические реакции (часто это реакции комплексообразования) с определяемым веществом. Иногда фоновый электролит одновременно играет роль буферного раствора. Например, при полярографическом определении ионов 0(1 +, Си +, N +1 o + в качестве фона используют аммиачный буфер- [c.139]


    Количественной характеристикой анализируемого соединения в полярографии является величина предельного диффузионного тока или высота волны (пика), которая в соответствии с уравнением Ильковича (2.11) является линейной функцией концентрации. Измерение высоты полярографической волны или пика проводят как показано на рис. 2.19. [c.141]

    По литературным данным наиболее надежным и чувствительным (нижний предел определяемых концентраций 0,4—0,5%) является полярографический метод. В присутствии диалкил сульфидов, предельный диффузионный ток которых достигается при том же потенциале, что и свободной серы, сначала снимают суммарную полярографическую волну, затем удаляют серу из того же раствора встряхиванием со ртутью и снова полярографируют. Уменьшение диффузионного тока соответствует содержанию свободной серы [190]. [c.442]

    В общем случае, измеряя при выбранных оптимальных условиях анализа значения аналитического сигнала (например, оптическую плотность — при фотометрических определениях силу диффузионного тока — при полярографических определениях и т. д.), отвечающие определенным разным значениям х (концентрации, содержанию или массовой доле в стандартных растворах, эталонах, стандартах), находят соответствующие пары значений г// и XI и по ним строят градуировочные графики. [c.35]

    Для рещения практических задач по полярографии обычно используют линейную зависимость величины диффузионного тока от концентрации d = k ° при работе с одним и тем же капилляром — постоянная величина). Для количественных полярографических определений используют три основных метода градуировочного графика, добавок и стандартов. [c.155]

    Потенциал полуволны ( 1/2) является важнейшей полярографической характеристикой это потенциал, при котором достигается величина тока, равная половине диффузионного (см. рис. 47) Ец2 не зависит от концентрации электроактивного вещества и является табличной величиной. Величина потенциала полуволны определяется главным образом величиной стандартного окислительно-восстановительного потенциала системы, соответствующей электродному процессу (например, Zn2+/Zn или Fe +/Fe2+), и несколько изменяется с изменением ионной силы раствора. Необходимо учитывать, что в полярографии значения потенциалов принято относить к значению потенциала насыщенного каломельного полуэлемента "нас. к. э = 0,2484 В. [c.155]

    В результате развития полярографического метода был разработан новый физико-химический метод титриметрического анализа, названный методом амперометрического анализа или АО к.т.т. Метод амперометрического титрования основан на измерении диффузионного тока, изменяющегося при титровании вследствие изменения концентрации определяемого вещества или титранта. [c.161]

    Таким образом, измерив силу предельного диффузионного тока, можно вычислить коэффициент диффузии разряжающейся частицы. На основании уравнения Нернста (ХП. 15) и уравнения (ХХУ.З) можно получить уравнение обратимой полярографической волны, которое имеет вид  [c.302]

    Наиболее важным выводом из уравнения (12.1), на котором основан количественный полярографический анализ, является пропорциональность между предельным диффузионным током и концентрацией определенного вещества в растворе. [c.117]

    Количественный полярографический анализ основан на уравнении Ильковича, которое связывает диффузионный ток с конценфацией иона с и рядом других величин  [c.270]

    АМПЕРОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ (гальванометрическое, поляриметрическое, вольт-амперное титрование) — метод количественного анализа, конечную точку титрования в котором определяют по изменению в процессе титрования величины предельного диффузионного тока, проходящего через раствор при постоянном напряжении между индикаторным электродом и электродом сравнения. А. т.—видоизменение полярографического метода анализа. В отличие от полярографического метода, точность А. т. не зависит от характеристики электрода и среды. Метод предложил в 1927 г. Я- Гейровский. [c.25]

    Пропорциональность корню из высоты ртутного столба — важный критерий диффузионных полярографических токов. [c.181]

    Одна из разновидностей полярографического метода — переменноточная полярография — основана на соотношениях для диффузионного импеданса. Принцип переменноточной полярографии состоит в том, что на ячейку кроме постоянного напряжения накладывают еще и переменную разность потенциалов небольшой амплитуды Уо (1 о 40 мВ). Поэтому потенциал электрода содержит постоянную и переменную составляющие [c.200]

    Прямое определение числа электронов п можно выполнить микрокулонометрически с помощью ртутного капающего электрода. Для этого используют кулонометр [392], или сравнивают в стандартных условиях полярографические диффузионные токи исследуемого вещества с током процесса, для кото poro п известно [393] критический обзор этих методов дан в работе [394]. Однако к числам электронов п, определенным из данных электролиза на макроэлектродах, следует относиться с определенной осторожностью из-за возможного протекания побочных реакции во время эксперимента. Для хорошо растворимых соединении [395] надежные результаты дает полярографическое определение концентраций электрохимически активных веществ, исходя из значении / ред и показании кулонометра, и расчет числа п из наклона зависимости ток — время, полученной в начальный период электролиза. Отсутствие линейной зависимости свидетельствует о протекании вторичных реакций. [c.231]


    Мейтес [53] определял кобальт в присутствии никеля путем измерения полярографических диффузионных токов при потенциале —0,70 в до и после окисления кобальта (II) до кобальта (III) в присутствии перманганата. Этот же исследователь определял кобальт (И) путем восстановления его до металлического состояния при потенциале —1,45 в в аммиачном фоновом электролите после предварительного восстановления- при потенциале —1,10 s. Предварительное восстановление переводило весь кобальт в двухвалентное состояние. Интересные эксперименты с органометаллическими соединениями кобальта проводили Пейдж и Уилкинсон [54]. Эти исследователи использовали полярографический метод для восстановления иона кобальтоциниум при —1,16 в в 0,Ш растворе перхлората натрия нри рН-6,2, однако, попытки получить кобальтоцен из иона кобальтоциниум нотенциостатическим восстановлением при —1,5 в оказались безуспешными. [c.50]

    Испытания на удержание циркония далее не проводили, их заменили гюлярограф1 ческн . змереииями восстанавливающихся форм циркония. Полярографический диффузионный ток при —1,1 в пропорционален числу 2 [15, 16]. [c.169]

    Оценим практически возможный диапазон полярографических диффузионных токов А/=/ макс—/мин-Полагая Пмин=1 е—, Пмакс=Ю е-, Смин=0,1 ммоль/л макс=1 ммоль/л /С=2 Лмин= 1 СМУС Дмакс= = Ы0 см /с, получаем /мин=607-1-0,1У1 10- -2 = = 0,12 мкА /макс = 607-10-1УЬ 10-5-2 = 38 мкА Л/= = 38 мкА / =log2 (38/0,1) =8,6 бит. [c.88]

    Полирограммы часто ие имеют такогО простого вида, как это показано иа рис. 15.10. На иих, ссли не прннять специальных мер, мо -ут появиться явно выраженные пики, или горбы, называемые полярографическими максимумалиг (рис, 15.11). Искажая форму волны и затрудняя опре-делснпе высот диффузионных токов, полярографические максимумы мешают проведению анализа. [c.317]

    В основе количественного полярографического анализа лежит линейная зависимость предельного диффузионного тока от концентрации потенциалопределяющих ионоз /см. уравнение (183.15)1. Для ртутного капельного электрода предельный диффузионный ток /д связан с коицентрацией с разряжающихся ионов уравнением Ильковнча  [c.504]

    Часто возникает вопрос если сила тока электрохимической реакции контролируется переносом электрона, то почему в этом случае возникает предельный диффузионный ток Это происходит потому, что для весьма разбавленных растворов, с которыми имеют дело в аналитической практике, при достаточно большом отклонении потенциала от равновесного все же реализуются условия, когда число вступающих в реакцию электродноактив-пых частиц делается соизмеримым с таковым в приэлектродной области, в результате чего происходит смена механизма контроля. Можио сказать, что в этом случае нижняя ветвь полярографической волны задается переносом электрона, а верхняя — подачей электродноактивных частиц на поверхность электрода. [c.277]

    Верхний горизонтальнЕ й участок кривой соответствует достижению предельного диффузионного тока. Если в растворе присутствует несколько деполяризаторов, то получаемая вольтамнерная кривая содержит ряд полярографических волн , расположенных в порядке, определяемом природой деполяризаторов. При соблюдении ряда условий (введение в исследуемый раствор фонового электролита и поверхностно-активных веществ) поступление деполяризатора к поверхности электрода обусловлено только диффузией, скорость которой при прочих равных условиях зависит от градиента концентраций деполяризатора у поверхности электрода и во всей массе раствора. При достижении некоторого потенциала предельного тока число частиц, вступающих в электрохимическую реакцию в единицу времени, становится равным их числу, диффундирующему из раствора к поверхности электрода. Достигается состояние концентрационной поляризации, при которой величина тока в ячейке остается постоянной. Как сказано выше, такой ток называется предельным диффузионным током. Зависимость величины диффузионного тока от концентрации деполяризатора для ртутного капающего электрода выражается уравнением Ильковича [c.154]

    При восстановлении различных ионов и электроактивных веществ на ртутном капающем электроде в зависимости от химических свойств элемента и постороннего электролита (фона) наблюдается характерная 5-образная зависимость тока в цепи ячейки от приложенного напряжения — полярографическая волна. Процесс восстановления может быть обратимым и иметь чисто диффузионный характер или, что более часто наблюдается на практике необратимым полностью или частично. В первом случае равновесие между окисленной и восстановленной формами деполяризатора и электродом устанавливается очень быстро потенциал электрода подчиняется уравнению Нернста, и ток определяется только скоростью диффузии деполяризатора. При этом волна характеризуется некоторым наклоном, определяемым величиной предлогарнфмического коэффициента 0,059/ , В (см. уравнение (81)), и занимает сравнительно небольшой участок потенциалов. [c.166]

    Для проведения определений можно применять полярографическую аппаратуру. Целесообразно вначале снять поляро-грамму раствора для установления значения напряжения, соответствующего области диффузионного предельного тока определяемого иона. При амперометрическом титровании это напряжение затем поддерживают постоянным. Однако работу можно выполнять и на упрощенной установке (рис. Д. 118). В ней в качестве неполяризуемого электрода при-меня ют каломельный электрод, а в качестве поляризуемого можно использовать ртутный капельный электрод. Однако для амперометричес- [c.298]

    Полярографический метод анализа широко используют для индикации точки эквивалентности при титровании. Поскольку регистрируемым аналитическим сигналом при этом является ток, такое титрование называют амперометрическим. Амперометрическое титрование проводят при потенциале, соответствующем предельному диффузионному току деполяризатора — одного из участников химической реакции, и регистрируют изменение тока в ходе титрования. По кривой зависимости ток — объем титранта находят точку эквивалентности. Амперометрическое титрование возможно при использовании химической реакции, отвечающей требованиям титриметрии, в ходе которой в объеме раствора изменяется содержание полярографически активного компонента, а следовательно, в соответствии с уравнением Ильковича (2.11), предельный ток его электрохимического восстановления или окисления. Взаимосвязь между вольтамперными кривыми и кривой зависимости предельного тока от объема полярографически активного титранта представлена на рис. 2.27. Кривая амперометрического титрования (рис. 2.27) состоит из двух линейных участков, пересечение которых соответствует точке эквивалентности. Форма кривой зависит от того, какой из компонентов химической реакции является полярографически активным (по току какого компонента проводится индикация точки эквивалеитност ). На рис. 2.28 изображены основные типы кривых амперометрического титрования, а в табл. 2.1 даны пояснения и примеры титрований. [c.153]

    Метод осциллографической полярографии можно видоизменить таким образом, что он становится удобным и при анализе многокомпонентных систем. Решение диффузионной задачи можно выразить при помощи производной половинного порядка от об >1чного полярографического тока (Р. Ш. Нигматуллин)  [c.210]


Смотреть страницы где упоминается термин Полярографический ток диффузионный: [c.361]    [c.50]    [c.448]    [c.399]    [c.109]    [c.140]    [c.153]    [c.283]    [c.293]    [c.140]    [c.201]   
Электрохимическая кинетика (1967) -- [ c.246 , c.252 ]




ПОИСК







© 2024 chem21.info Реклама на сайте