Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пассивность солевая

    В процессе анодного окисления металлы могут переходить в пассивное состояние. Оно может быть вызвано появлением солевых пленок, например, за счет выпадения соли из пересыщенного прианодного слоя, рост концентрации в котором был вызван замедленным отводом продуктов ионизации анода, или за счет образования труднорастворимых солей, которые не переходят в растворенные комплексные ионы в связи с отсутствием достаточного количества лиганда. Очень распространенной является пассивность, вызванная появлением кислородных образований (пленки оксидов, гидроксидов, адсорбированных слоев кислорода). Возникновение их связано с достижением соответствующих значений потенциалов в результате смещения потенциала анода в электроположительную сторону. При переходе в пассивное состояние скорость растворения анода падает практически до нуля. [c.142]


    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых окисных пленок или солевых пленок, возникающих при растворении металлов. Образование окисных пленок — причина устойчивости многих металлов, например алюминия. Из рис. 96 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют [c.215]

    Адсорбция ПАВ возможна не только непосредственно на металле анода, но и на кристаллах соли, которые образуются в результате протекания анодной реакции. В этом случае в результате адсорбции ПАВ пассивное состояние электрода наступает быстрее из-за образования такого солевого слоя. Необходимо, однако, заметить, что адсорбция не всегда приводит к торможению анодного процесса. В некоторых случаях возможна активация анодного растворения в результате образования комплексов с ионами растворяемого металла либо вследствие разрушения пассивирующего слоя частицами ПАВ. Такие явления наблюдаются преимущественно при адсорбции неорганических анионов. Аналогичный эффект отмечен А. И. Левиным с сотрудниками в случае анодного растворения металла (меди) в присутствии органических соединений. Было замечено, что введение высокомолекулярных и коллоидных поверхностно активных веществ влияет также на вязкость раствора. [c.429]

    Для МЦ ХИТ с солевым электролитом характерен значительный саморазряд (до 30% в год), обусловленный взаимодействием цинкового электрода с хлоридом аммония, водой и растворенным кислородом с последующим образованием труднорастворимых пассивных пленок  [c.63]

    Изменение концентрации продуктов анодной реакции в растворе может косвенно оказывать влияние на пассивирование электрода. Поскольку растворимость солей ограниченна, чрезмерное накопление ионов металла в приэлектродном слое приводит к выделению солей на электроде, экранированию части поверхности и резкому усилению тока на свободной части поверхности, что облегчает пассивирование. Пассивность такого вида называется солевой. [c.15]

    Почти во всех исследованных растворителях на анодных поляризационных кривых наблюдаются области активного растворения и пассивации железа. Продолжительность и соотношение этих областей в шкале потенциалов определяются природой электролита, в первую очередь его анионным составом [349, 977, 604, 605]. На формирование его пассивной области большое влияние оказывает присутствие воды. Природа пассивирующ,их пленок разнообразна от адсорбционных молекул растворителя до фазовых оксидных и солевых пленок [П99, 1227, 783]. Наряду с электрохимическим механизмом при коррозии железа наблюдается и чисто химический [632—635]. Уделено внимание теории подбора и практического использования ингибиторов коррозии в неводных средах [632— 635, 125, 126, 230]. [c.121]


    Присутствие электропроводных добавок (воды, осадков продуктов коррозии) Перемешивание, повышение скорости потока за счет изменения сечения аппарата, разности температур Снижение вязкости при повышении температуры Повышение концентрации воды в условиях солевой пассивности [c.342]

    Из существующих теорий для объяснения пассивного состояния металлов рассмотрим наиболее обоснованные и признанные — пленочную и адсорбционную. Пленочная теория пассивности объясняет состояние повышенной электрохимической устойчивости металлов образованием на их поверхности очень тонкой защитной пленки из нерастворимых продуктов взаимодействия металла со средой. Пленка состоит обычно из одной фазы, может быть солевой, гидроокисной или (наиболее часто) окисной природы. Поведение металла в пассивном состоянии определяется, таким образом, не свойствами самого металла, а физико-химическими свойствами пленки. Образовавшийся на анодной поверхности при электрохимическом процессе фазовый окисел вызывает более стойкое пассивирование в кислородсодержащем электролите, имеющем нейтральную или щелочную реакцию. Вместе с тем при анодной поляризации металла в кислородсодержащих кислотах образовавшаяся пассивная пленка находится в состоянии динамического равновесия с раствором, т. е. растворение внешней части пленки под химическим воздействием электролита компенсируется одновременным процессом анодного возобновления пленки. [c.28]

    Поляризационные кривые, полученные для электролитов с различной концентрацией цианистого калия и едкого натра, имеют участок предельного тока, соответствующий почти полной пассивации анода. Увеличение концентрации цианистого калия и едкого натра приводит к повышению предельной плотности тока. При малой концентрации едкого натра (12 Г л), после достижения пассивного состояния анода, дальнейшее повышение плотности тока приводит к быстрому росту потенциала и падению силы тока до нуля. На аноде образуется белая солевая пленка, не проводящая ток. При более высоких концентрациях щелочи на аноде образуется пленка темно-коричневого цвета, которая проводит ток и после выключения тока постепенно растворяется в электролите. [c.84]

    В какой-то момент раствор становится насыщенным относи-тельно соли, которая начинает кристаллизоваться на поверхности электрода, закрывая его слоем, обладающим более низкой электропроводностью, чем раствор. В результате ток сосредоточивается на обнаженных местах, т. е. плотность его возрастает, а вместе с тем возрастает и анодная поляризация электрода — его потенциал еще больше сдвигается в положительную сторону. Рост потенциала продолжается и через некоторое время он достигает величины Фо, свыше которой становится возможным выделение кислорода из раствора. При этом начинается пассивирование электрода сила тока падает, а потенциал электрода растет. На пассивном электроде происходит выделение кислорода. Поскольку растворение электрода прекращается, солевая пленка на нем постепенно растворяется, и электрод оказывается покрытым только окислом или адсорбционной (кислородной) пленкой. [c.60]

    Установление причин, вызвавших пассивность анода, чрезвычайно важно, так как это помогает выбрать условия, обеспечивающие возвращение анода к активному состоянию. Если солевую пассивность можно устранить применением перемешивания (или других факторов, увеличивающих скорость диффузии) или повышением концентрации лиганда в растворе, то пассивность, вызванная появ- [c.142]

    Пассивацию могут вызывать также и солевые пленки, образующиеся при растворении металла. Согласно адсорбционно-электрохимической теории пассивности пассивация связана с появлением на поверхности металла монослоя или даже долей монослоя адсорбированного кислорода. Адсорбированный кислород изменяет энергетическое состояние поверхностных атомов, блокирует активные центры растворения металла и изменяет структуру двойного слоя. Иногда необходимо учитывать одновременно пассивацию за счет образования как фазовых, так и двумерных оксидных или гидрооксидных слоев. Поэтому пленочную и адсорбционно-электрохимическую теории не следует противопоставлять друг другу. [c.367]

    Пассивацию могут вызывать солевые пленки, образующиеся при растворении металла. Пленочная теория развивалась в работах В. А. Кистяковского, Н. А. Изгарыщева, Г. В. Акимова, Ю. Эванса и др. Согласно адсорбционно-электрохимической теории пассивности (Б. В. Эршлер, Б. Н. Кабанов, Я. М. Колотыркин и др.) пассивация связана с появлением на поверхности металла монослоя или даже долей монослоя адсорбированного кислорода. Адсорбированный кислород изменяет энергетическое состояние поверхностных атомов, блокирует активные центры растворения металла и изменяет структуру двойного слоя. Иногда необходимо учитывать одновременно пассивацию за счет образования как фазовых, так и двумерных окисных или гидроокисных слоев. Поэтому пленочную и адсорбционно-электро-химическую теории не следует противопоставлять друг другу. [c.382]


    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых оксидных или солевых пленок, возникающих при растворении металлов. Образование оксидных пленок — причина устойчивости многих металлов, например алюминия. Из рис. IX. 6 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют также, напыляя более благородный металл на защищаемый, используя благородные металлы в качестве легирующих добавок или протекторов. В результате основной металл поляризуется анодно и переходит в пассивное состояние. Переход в пассивное состояние может вызвать присутствие в растворе окислителей, например кислорода и др. (рис. IX. 6). Так, пассивацию железа вызывают концентрированные HNOa и H2SO4, что позволяет использовать железную тару для перевозки серной и азотной кислот. Образование оксидных слоев сильно влияет не только на анодное растворение металлов, но приводит к ингибрированию и многих других электродных процессов. Поэтому изучение механизма пассивации, процессов образования, роста и свойств оксидных слоев на металлических электродах — важная задача современной электрохимии. [c.258]

    Экспериментальные данные о хемомеханическом эффекте, приведенные выше, характеризуют его пластифицирующее действие как на активно, так и на пассивно растворяющейся поверхности, в том числе в условиях образования окисных или солевых (фосфат- ных) пленок. Последнее обстоятельство подтверждает тот факт, I что хемомеханический эффект, в отличие от адсорбционного, не связан с изменениями поверхностной энергии, так как пассивация [ поверхности (повышение стойкости против растворения) означает как бы упрочнение межатомных связей поверхностных атомов, а следовательно и повышение поверхностной энергиц, но твердость 1 и микротвердость при этом все же уменьшаются т. е. металл пла- 1. стифицируется. [c.143]

    Примером солевой пассивности является поведение цинка в атмосфере и в нейтральных водных растворах. Окисно-солевая пленка цинка устойчива в интервале pH = 9ч-11 в атмосфере, в пресной воде. Образованием труднорастворимых продуктов коррозии обт.ясня-ется высокая коррозионная стойкость в ряде кислот. [c.34]

    К тугоплавким металлам, рассматриваемым здесь, относятся тантал, цирконий, ниобий, молибден, вольфрам, ванадий, гафний и хром. Данные о Коррозионном поведении этих металлов в морских средах сравнительно немногочисленны. Однако известно, что все эти металлы обладают великолепной стойкостью в различных агрессивных условиях. В химических свойствах тугоплавких металлов много общего. Наиболее важным является способность образовывать на поверхности тонкую плотную пассивную окисиую пленку. Именно с этим свойством связана высокая (от хорошей до отличной) стойкость тугоплавких металлов в солевых средах. При экспоз1П1ИИ в океане все эти металлы подвержены биологическому обрастанию, однако большинство из них достаточно пассивны и сохраняют стойкость дал4е при наличии на поверхности отложений. [c.160]

    Нередко А. р. осложняется вторичными явлениями. Так, образование на пов-сти растворяющегося металла фазовых или адсорбционных солевых или оксидных слоев приводит к пассивации А. р. (см. Пассивность металлов), к-рая проявляется в ослаблении зависимости его скорости от потенциала, в достижении предельной плотности тока растворения, а иногда и в изменении типа зависимости. В водных средах повьпц. склонностью к пассивации отличаются мн. переходные металлы (Мо, Сг, Ni, Fe и др.). Для них характерен критич. потенциал Е р, зависящий от природы металла и pH р-ра. При достижении Е р обычное увеличение скорости А. р. сменяется ее резким снижением, иногда до неск. порядков величины. После этого в большом интервале значений потенциала скорость А. р. сохраняется постоянной, а затем снова начинает экспоненциально расти с потенциалом (см. рис.). Последнее явление, известное как пере na ia / [c.170]

    ПАССИВНОСТЬ МЕТАЛЛОВ, повышенная стойкость металлов против коррозии в условиях, когда термодинамически металл реакционкоспособен. Обусловлена образованием защитных поверхностных соединений при взаимодействии металла с компонентами среды в процессе анодного растворения. Переход металла в пассивное состояние наз. пассивацией, образующийся на его пов-сти слой-пассивирующим слоем. Пассивирующие слои тормозят, помимо окисления металлов, также протекание на их пов-сти электродных окислит.-восстановит. р-ций. По составу пассивирующих слоев различают оксидную П. м. и солевую (возможны слои более сложного состава). Термин П. м. нередко используют для описания торможения поверхностными слоями нек-рых др. гетерог. р-ций газовой коррозии (оксидные пленки и окалины), электрокристаллизации (адсорбц. пленки ПАВ). [c.448]

    Пассивность металлов - переход металлов в сосгояние, при котором резко замедляется их корротия. Пассивность может быть самопроизвольным (спонтанным) процессом за счёт образования на поверхности корродирующего металла труднорастворимых оксидных, солевых, адсорбционных и др. плёнок. [c.6]

    Образование трудно-растворимых фосф1т-ных пленок Образование фосфатных пленок Связывание кислорода, содержащегося р солевом растворе Образование пленки трудиорастворнмых бензоатов железа, ограничив ающе Й доступ среды к металлу Образование пассивной плеики [c.863]

    ПАССИВНОСТЬ МЕТАЛЛА, заторможенность р-ций металла со средой, обусловленная действием агрессивных агентов (т. н. пассиватс в). Последние хемосорбируются на пов-сти металла или образуют с ним самостоят. твердофазные хим. соед., что препятствует нормальному росту металлич. кристаллов, их растворению, окисленто, дальнейшему взаимод. с пассиваторами и т. п. Соответственно природе соед., образующих барьер, различают оксидную, солевую, гидридную и др. типы П. м. Наиб, важна оксидная П. м., поскольку самый распространенный пассиватор — кислород. [c.424]

    По данным Франка при растворении железа в серной кислоте можно наблюдать образование пористого слоя Ре304 ТН О до образования собственно пассивирующего слоя в порах солевого осадка. После включения тока, плотность которого выше минимальной плотности тока г пас необходимой для пассивации, железо некоторое время продолжает оставаться активным, пока не перейдет в пассивное состояние. Через время Тдас, необходимое для пассивации, потенциал скачкообразно возрастает (рис. 361). [c.825]

    Основатель современного направления электрохимической науки о коррозии металлов. Выполнил фундаментальные исследования в области электрохимической кинетики коррозионных процессов и показал возможность приложения законов электрохимической кинетики к трактовке процессов коррозии твердых металлов в электролитах. Предложил и широко использовал потенциостатические методы исследования коррозионных процессов. Выработал научный подход к рациональному легированию при создании новых сплавов. Развил адсорбционную теорию пассивности металлов, теорию непосредственного участия компонентов раствора в элементарных стадиях растворения металла, электрохимическую теорию питтинговой коррозии, теорию солевого ингибирования и химической пассивности. Предложил и осуществил новые прогрессивные методы защиты металлов, в том числе метод анодной защиты. [c.248]

    При ограниченной растворимости солей на поверхности металла образуется экранирующий осадок продуктов коррозии, вызывающий солевую пассивность и тормозящий коррозию [4]. Например, в растворах НР, НС в 2-фтор-З-хлорпропаноле (кислый растворитель) солевая пассивность наблюдалась на стали 15Х25Т, железе, титане в растворах оксалатов — на железе. Отличие в скорости растворения железа, никеля, меди в каждом из рсстворителей (этаноле, 1дл метаноле, ацетоне) объясняют различным механизмом образования экранирующих осадков (рис. 11.4). [c.339]

    Коррозионную стойкость металлов в пассивном состоянии, эффективность защиты их от коррозии в солевых расплавах при пассивации исследуют в двух направленияхг электрохимическими методами изучают кинетику процессов, протекающих на металлах после пассивации  [c.368]

    По всей вероятности, пассивность титана в данном случае обусловлена, образованием на поверхности защитных солевых пленок (в процессе опытов образцы покрываются пленкой красно-коричне-вого цвета), типа фтортитанатов Na. TiF, , обладающих ограниченной растворимостью в водных растворах. [c.136]

    В растворе Na l поверхностная солевая пленка не обладает такими защитными свойствами, какие обеспечивает пассивация железа кислородом в растворе Na lOa [16, 31, 33] (в пассивной области в растворе Na l протекает ток высокой плотности). Это снижает локализацию процесса растворения металла в зоне, предназначенной для обработки, и этим снижается точность ЭХРО. [c.166]

    В тех случаях, когда теплообмен должен осуществляться при температуре, превышающей 300° С, бывает целесообразным применение высокотемпературных теплоносителей на основе высококипя-щих органических соединений или расплавленных солей. Органические теплоносители в коррозионном отношении сравнительно пассивны. Применение солевых расплавов, наоборот, требует от кор-розионистов и материаловедов большой осторожности. Поэтому во втором разделе, посвященном высокотемпературным теплоносителям, внимание в основном сосредоточено на коррозионном действии расплавленных нитратов — наиболее употребительном солевом теплоносителе. [c.6]

    Металлы, расположенные между магнием и водородом, вытесняют водород из растворов кислот. При этом на поверхности некоторых металлов также образуются защитные пленки, тормозящие реакцию. Так, окс/1Дная пленка на алюминии делает этот металл стойким не только в воде, но и в растворах некоторых кислот. Свинец не растворяется в серной кислоте при ее концентрации ниже 80%, так как образующаяся при взаимодействии свинца с серной кислотой соль РЬЗО нерастворима и создает на поверхности металла защитную пленку. Явление глубокого тормо.ження окисления металла, об т.ловлениое аличнем 1а его поверхности защитных оксидных или солевых пленок, называется пассив-ностью, а состояние металла при этом — пассивным состоянием. [c.291]


Смотреть страницы где упоминается термин Пассивность солевая: [c.485]    [c.291]    [c.390]    [c.458]    [c.9]    [c.424]    [c.114]    [c.361]    [c.347]    [c.374]    [c.240]    [c.161]    [c.15]   
Ингибиторы коррозии (1977) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Пассивность



© 2025 chem21.info Реклама на сайте