Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексообразование температуры

Рис. 97. Зависимость константы равновесия К (а) и изобарно-изотермического потенциала ДО (б) комплексообразования с н-алканами от температуры (растворите.гь — бензол). Рис. 97. <a href="/info/666659">Зависимость константы равновесия</a> К (а) и <a href="/info/3388">изобарно-изотермического потенциала</a> ДО (б) комплексообразования с н-алканами от температуры (растворите.гь — бензол).

    С другой стороны, имеются весьма веские подтверждения химической природы комплексообразования. К числу их относится прежде всего тот факт, что комплексообразование подчиняется законам, управляющим химическими реакциями, в частности закону действующих масс, а также то, что изменение условий комплексообразования (температура, концентрация) влияет на равновесие, скорость образования комплекса, эффективность разделения и т. д. Ускорение комплексообразования при добавлении активаторов позволяет провести аналогию с ускорением химических реакций при подаче катализаторов. [c.25]

    В зависимости от условий комплексообразования (температуры, времени контакта), а также количественных соотношений сырья, карбамида, растворителей и активаторов получаются различные результаты по выходам и по качествам получаемых продуктов депарафинизации. [c.254]

    Большое значение при комплексообразовании имеют температурные условия. Изменения температуры оказывают на процесс комплексообразования двоякое действие. С одной стороны, при возрастании температуры повышается взаиморастворимость действующих веществ, усиливается диффузия, снижается вязкость [c.145]

    В связи с изложенным температуру комплексообразования стремятся обычно брать по возможности высокой, насколько это позволяет заданная глубина депарафинизации. При обработке светлых продуктов и дизельных топлив следует применять более низкую температуру, чем при депарафинизации масел при обработке продуктов водными растворами карбамида — более низкую, чем при депарафинизации твердым карбамидом. [c.146]

    Иногда при обработке продуктов водным раствором карбамида процесс комплексообразования ведут при изменяющейся температуре, — в начале процесса повышенной, а к концу — более низкой. Это позволяет поддерживать раствор карбамида все время в насыщенном состоянии и иметь в течение всего процесса максимальную активную концентрацию карбамида, близкую к единице, несмотря на убыль свободного карбамида для образования комплекса. [c.146]

    При депарафинизации в водном растворе карбамида комплекс разлагают также в присутствии воды. Для этого комплекс смешивают с оставшимся после комплексообразования водным раствором карбамида и нагревают до температуры разложения. При этом высвобождающийся карбамид растворяется в водной фазе, а застывающий компонент отделяется от водного раствора непосредственным отстоем или экстрагированием легким углеводородным растворителем. [c.150]

    Конечная температура комплексообразования, °С. . . . 27 Продолжительность контакта цри комплексообразовании, [c.215]


    Температура насыщения раствора карбамида, °С Конечная температура комплексообразования, С Продолжительность контакта при комплексообразовании [c.217]

    В процессе ГрозНИИ используют кристаллический карбамид, и, поскольку он обладает максимальной активностью по сравнению с растворами, комплексообразование проводят при постоянной температуре. [c.88]

    Возможно, что существует переходная область, связывающая структуру органического вещества и температуру комплексообразования, за которой все комплексы соответствующих реагентов одинаковы. [c.215]

    Теплоты комплексообразования с тиомочевиной значительно ниже, чем с мочевиной. Эти данные находятся в полном соответствии с тем, что комплексы с тиомочевиной гораздо менее стабильны, чем комплексы с мочевиной, и соответственно этому снижение стабильности колшлексов тиомочевины в зависимости от температуры происходит значительно менее резко, поэтому температуры разложения их сравнительно высоки. [c.220]

    Равновесие сдвигается в сторону диссоциации при добавлении растворителей карбамида или углеводородов и повышении температуры [1—4, 16, 27]. Низкомолекулярные -парафины образуют менее стабильный комплекс, чем высокомолекулярные, однако скорость образования комплекса для них выше. Комплекс образуется в присутствии так называемых активаторов, к числу которых относятся вода, низшие спирты, кетоны, некоторые хлорорганические соединения, а также насыщенные водные или спиртовые растворы карбамида. Существует несколько мнений о механизме действия активаторов в процессе комплексообразования с карбамидом. По данным [3], роль активаторов заключается в удалении неуглеводородных примесей с поверхности кристаллов карбамида, что дает возможность молекулам углеводородов проникать в эти кристаллы. Высказано предположение [29], что сначала структура кристаллов карбамида преобразуется из тетрагональной в гексагональную, а действие растворителей карбамида заключается в осаждении его в тонкоизмельченном виде, что обеспечивает мгновенное образование комплекса с углеводородами. [c.203]

    Координационное число не является неизменной величиной для данного комплексообразования, а обусловлено также природой лиганда, его электронными свойствами. Даже для одних и тех же комплексообразователей и лигандов координационное число зависит от агрегатного состояния, от концентрацни компоиентов и температуры раствора. [c.585]

    Однако несмотря на высокую эффективность н-алканов при-обезмасливании петролатумов высокая стоимость делает их применение на промышленных установках маловероятным. В связи с этим в качестве модификаторов структуры твердых углеводородов при обезмасливании петролатумов были исследованы фракции, выделенные из мягкого и твердого парафинов холодным фракционированием и комплексообразованием с карбамидом, которые, по данным газо-жидкостной хроматографии и масс-спектрометрического анализа, содержали 35—40% (масс.) н-алканов С20— 2 Применение таких фракций в процессе обезмасливания петролатума показало (рис. 72), что скорость фильтрования суспензии петролатума увеличивается при более высоких их концентрациях, чем при введении индивидуальных н-алканов. Полученные при этом церезины характеризуются более высокой температурой плавления (рис. 73) и меньшим содержанием масла. [c.185]

    С карбамидом в том случае, если в основной цепи содержится не менее 10 атомов углерода. Циклические углеводороды способны к комплексообразованию при наличии боковых цепей нормального строения с числом атомов углерода 20—25. Известно также о кратковременном существовании неустойчивых комплексов карбамида с н-бутаном и даже с пропаном [13]. При пониженных температурах (ниже —19 °С) н-пентан образует весьма непрочный комплекс с карбамидом [14], что подтверждается началом его разложения уже при 10—12°С. Из смеси пентанов нормального и изостроения при температурах минус, 35—45 °С, давлении 0,1 — 0,2 МПа (1—2 кгс/см ) и длительности контактирования 3 ч можно извлекать н-пентан комплексообразованием с карбамидом. [c.198]

    Из раствора двух или более парафиновых углеводородов в инертном растворителе образуется комплекс, представляющий собой единый твердый раствор всех комплексообразующих углеводородов [5]. Равновесное состояние определяется суммарной концентрацией нормальных парафинов. В смеси углеводородов, образовавших комплекс, преимущественно содержатся компоненты с меньшими константами равновесия. Температура разложения комплекса смеси двух комплексообразующих углеводородов является примерно средней между температурами диссоциации комплексов каждого компонента в отдельности [16, 17]. В работах [25] показано, что верхний предел комплексообразования (ВПК) смесей двух н-парафинов имеет промежуточное значение между ВПК чистых компонентов. При обработке карбамидом раствора [c.202]

    Приведенные данные показывают, что можно заметно усовершенствовать существующие методы выделения и дифференциации ГАС с помощью комплексообразования и повысить их селективность путем оптимального подбора акцепторов и координирующих растворителей. Однако не исключено, что галогениды переходных металлов — кислоты Льюиса, способные катализировать процессы изомеризации, диспропорционирования и т. д.— могут вызывать изменения первичной природы наиболее лабильных ГАС. Этот вопрос изучен явно недостаточно, и потому при применении комплексообразования с солями металлов в аналитических целях должны соблюдаться известные меры предосторожности (краткосрочность контактов, малые соотношения реагент сырье, невысокие температуры и пр.). [c.13]


    В зависимости от принятого варианта работы установки реакция комплексообразования на 1 и П ступенях протекает в. интервале температур от 35 до 25 С. На Ш ступени комплексообразования температура повышается на 5°С для получения твердых легкофильтруемых гранул комплекса оптимального размера. Температура в реакторах поддерживается путем частичного отсоса паров хлористого метилена компрессорами (на рисунке не показаны). [c.133]

    При полимеризации этилена на каталитических системах, включающих Т1С14, молекулярная масса полимера определяется рядом факторов мольными отношениями компонентов каталитического комплекса, временем и температурой комплексообразования, температурой реакции полимеризации, строением алкилалюминиевого компонента каталитиче- [c.20]

    В трехгорлую колбу емкостью 250 мл, снабженную эффективной мешалкой, пропущенной через холодильник, термометром и капельной воронкой, помещают 4 мл 36%-ной соляной кислоты (1,7 г 100°/п-ной НС1 0,047 М) (см. примечание 5) и 13,4 г (0,056 М) хлористого кобальта (см, примечание 6). При перемешивании из капельной воронки постепенно прибавляют 60 г хинолин-изохинолиновой фракции, снободпой от примесей углеводородного характера и содержащей примерно 60% изохинолина (36 г 0,28 М), остальное—хинолин и хинальдин. За счет тепла реакций нейтрализации и комплексообразования температура реакционной массы повышается до 40—60°. После прибавления смеси оснований содержимое колбы при размешивании быстро доводят до интенсивного кипения, после чего убирают нагреп и реакционной массе дают постепенно охладиться при непрерывном перемешивании до 10—15° (1—2 часа к концу охлаждение ведут холодной водой). При этой температуре реакционную массу размешивают дополнительно 15 минут. Выпавший осадок комплекса изохинолина с хлористым кобальтом отфильтровывают на воронке Бюхнера, тщательно отжимают и на фильтре дважды промывают по 15—20 мл метанола (см. примечание 7). Получают 40 г хлорида тстраизохинолинкобальта в виде слегка смоченного метанолом порошка розового цвета. Его перекристаллизовывают из 140 мл ацетона. Получают 28,8 г очищенного комплекса. Из ацетонового маточника после упаривания до Уз первоначального объема получают дополнительно 7,2 г про- [c.51]

    В качестве объектов газохроматографического анализа используются концентраты н-алканов исследуемых нефтей. Выделение н-парафинов из фракции НК—200 °С можно проводить с помошью цеолитов типа СаА (см. гл. 4). Для определения н-парафинов в средних и высших фракциях отбензипенные и обессмоленные фракции после деароматизации подвергают обработке карбамидом. Поскольку исследуемый ряд гомологов (от Сц до Сз5 4о) характеризуется разными условиями комплексообразования (температурой, соотношением карбамида и продукта), для полноты выделения н-парафинов рекомендуется проводить раздельное исследование фракций 200—350 и остатка выше 350 °С (см. гл. 4). [c.214]

    Комплексообразование целесообразное по условиям равновесия проводить при высокой концентрации карбамида и относите/ ьно низкой температуре (20— 45 °С), что является важным досто — ин твом процесса. Другим существенным преимуществом карба — мирной депарафинизации является значительно более высокая сеу ективность по отношению к нормальным парафиновым углеводородам, что определяет большой выход денормализата (75 — 90 % ма с.). Однако селективность карбамида снижается с повышением температуры кипения сырья депарафинизации. Поэтому карба — мидная депарафинизация применяется преимущественно для получения низкозастывающих дизельных топлив и маловязких масел. [c.271]

    В практике депарафинизации карбамидом применяют примерно следующие температуры комплексообразования. При депарафинизации светлых продуктов и дизельных топлив водными растворами карбамида температуру обработки продукта поддерживают на уровне 15—25° и иногда снижают до 10°. При обработке этпх продуктов твердым карбамидом температуру повышают до 20—30°. Легкие масла депарафинируют твердым карбамидом при 30—40°. Для более тяжелых масел температура может быть повышена до 40—45°. При депарафинизации масел, содержащих относительно высокоплавкие парафины, необходимо проводить предварительную термическую обработку реагирующей смеси, нагревая ее до 55—60° [37]. [c.146]

    Получаемый при карбамидной депарафинизации застывающий компонент обычно содержит значительное количество углеводородов с невысокими и очень низкими температурами застывания. Это обусловливается, с одной стороны, способностью карбамида давать комплексы с рядом углеводородов разветвленных и циклических структур, не обязательно обладающих высокими температурами кристаллизации, и, с другой стороны, трудностями освобождения комплекса от увлекаемых им значительных количеств депарафинированного продукта. Для получения из застывающего компонента технических парафинов должной чистоты и тем более для выделения из них относительно чистых к-алканов требуется значительная дополнительная обработка этих продуктов — обезмасливание, деароматизация, очистка, а иногда даже и повторное комплексообразование, проводимое, в частности, при несколько повышенных температурах и при пониженной кратности обработки карбамидом. [c.152]

    Технологическая схема процесса следующая (рис. 34). Сырье и раствор карбамида, насыщенный при 35°, подают из емкостей и 2 в первый реактор комплексообразования 4. Туда же вводят раствор от промывки комплекса па вакуумном фильтре 6 и раствор от промывки метилизобутилкетоном водного раствора непрореагировавшего карбамида из отстойника 9. В реакторе 4 смесь обрабатывают при температуре, повышенной по сравнению с конечной температурой комплексообразования и близкой к температуре насыщения рабочего водного раствора карбамида. Из реактора 4 реагирующую смесь перекачивают в реактор 5, в котором процесс комплексообразования завершается при установленной конечной температуре. Смесь продуктов реакции, состоящая из раствора депарафинированного продукта в метилизобутилкетоне, водного раствора пепрореагировавшего карбамида и образовавшегося твердого комплекса, из реактора 5 подают в вакуумный фильтр 6., [c.213]

    Депарафинизация с использованием карбамида отличается от депарафинизации избирательными растворителями возможностью проведения процесса при положительных температурах. Здесь приводятся два варианта принципиальных схем процесса карбамидной депарафинизации, нашедших применение в отечественной нефтеперерабатывающей промышленности схема процесса, разработанного Институтом нефтехимических процессов Академии наук Азербайджанской ССР (ИНХП) и запроектированного ВНИПИнефти, и схема процесса, разработанного Грозненским нефтяным научно-исследовательским институтом (ГрозНИИ) и запроектированного Грозгипронефтехимом. Схемы различаются агрегатным состоянием карбамида, подаваемого в зону реакции комплексообразования, и, как следствие, аппаратурным оформлением реакторного блока, а также секций разделения твердой и жидкой фаз и регенерации основных реагентов. Кроме того, используются различные активаторы и растворители, хотя в обоих вариантах целевыми являются одни и те же продукты низкозастывающие дизельные топлива или легкие масла и жидкие парафины. [c.88]

    Длина цепей 1,4-дидецилциклогексана, по-видимому, недостаточна для образования комплекса с мочевиной. При помощи комплексообразования с мочевиной были выделены гомологи с длинными цепями иа твердых парафинов, имеющих высокую температуру плавления. [c.205]

    При выделении мочевиной -парафиновых углеводородов из бензиновых фракций повышается октановое число топлива. Подобное разделение применимо к высококинящим фракциям с целью получения -парафиновой фракции, используемой в качестве компонента дизельных топлив. Мочевина селективно удаляет компоненты с длинной цепью, имеющие высокую температуру плавления, поэтому комплексообразование может быть использовано для депарафинизации при понижении температуры застывания керосинового сырья для удовлетворения требованиям спецификаций на реактивные топлива. Этот же процесс может применяться при дспарафинизации сырья для смазочных масел с целью понинтения температуры текучести масла, а также для получения и модификации нефтяных парафинов. Вполне возможно использование мочевины и для получения чистых фракций -углеводородов. [c.225]

    Комплексы тиокарбамида менее устойчивы, чем карбамидные. Так же как в случае карбамида, взаимодействие углеводородов с тиокарбамидом определяется соответствием размеров их молекул тгаперечно му сечению каналов в рвшепке тиокарбам ида. Диа,метр поперечного сечения молекул, способных давать комплексы с тиокарбамидом, составляет примерно 5,8—6,8 [41]. Обычно соединения, образующие комплекс с карбамидом, не дают комплекса с тиокарбамидом. Однако некоторые длинноцепные углеводороды при 0°С образуют малоустойчивые комплексы с тиокарбамидом. Это объясняется тем, что при пониженной температуре цепь молекулы парафина нормального строения свертывается в миоговит-ковую спираль, в результате размеры молекул удовлетворяют пространственным требованиям для комплексообразования с тиокарбамидом. [c.205]

    Все указанные исследования касались депарафинизации кристаллическим карбамидом. При проведении карбамидной депарафинизации водным или водно-спиртовым раствором карба1мида основным фактором является концентрация его в растворе. Наибольшая глубина процесса достигается при использовании насыщенных растворов карбамида. В промышленных условиях это осуществляется насыщением при температуре, превышающей температуру комплексообразования, и медленным снижением температуры в реакторном блоке. Комплексообразование. с водным раствором карбамида имеет ряд недостатков, к числу которых в первую очередь относятся необходимость интенсивного перемешивания н наличие индукционного периода последний зависит от концентрации раствора карбамида и химического состава сырья (содержания комплексообразующих углеводородов, ароматики и [c.227]

    Интересные данные [73] получены при изучении возможности образования карбамидного комплекса н-пентана из смеси его с изопентаном и влияния ряда факторов на этот процесс. Показано (табл. 39), что в интервале температур от — 19 до —68°С изменяется состав исходной углеводородной смеси снижается содержание н-пентана. Тем самым установлена возможность его комплексообразования с карбамидом в условиях низких температур. Полученный комплекс малостабилен и начинает разрушаться уже при 10—12 °С. Карбамидный комплекс с н-бутаном и даже с пропаном образуется при повышенном давлении [74], однако при комплексообразовании н-шентана повышение давления до 10—15 МПа (100—150 кгс/ом ) не дало никаких результатов. Наибольшая глубина извлечения н-пентана из смеси достигается при температурах от 35 до —45 °С и не зависит от длительности контактирования. Авторы [73] рекомендуют обогащать исходное сырье изопентаном путем извлечения карбамидом ннпентана в качестве основы технологического процееса выделения изопентана из пентановых фракций бензинов и газоконденсатов. [c.236]

    Одним из фЗ Кторов, позволяющих повысить продолжительность эксплуатации установок карбамидной депарафинизации прц использовании кристаллического карбамида, является поддержание достаточно низкой влажности твердой фазы — карбамида и комплекса. Анализ работы установки карбамидной депарафинизации [82] показал, что при повышении температуры, особенно после разложения комплекса даже при содержании влаги 1% карбамид оседает, налипая на внутренних поверхностях оборудования и трубопроводов, что приводит к их забивке и прекращению работы установки. Для поддержания определенного уровня влажности твердой фазы на разных стадиях процесса (0,7— 1,5% (При комплексообразовании, до 0,1% при разложении комплекса и 0,2—0,5% при промывке) предложено отделять влагу из растворителя (бензина) электроосаждением с последующим отстаиванием в резервуаре регенерированного бензина. Таким образом, выбор оптимальных условий промывки комплекса (кратности, состава, конструктивных особенностей, содержания влаги) позволяет улучшать показатели процесса депарафинизации нефтепродуктов карбамидом. [c.245]


Смотреть страницы где упоминается термин Комплексообразование температуры: [c.146]    [c.210]    [c.212]    [c.216]    [c.88]    [c.204]    [c.302]    [c.24]    [c.124]    [c.202]    [c.206]    [c.210]    [c.217]    [c.230]    [c.232]    [c.233]    [c.236]   
Фотометрический анализ (1968) -- [ c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразованне



© 2025 chem21.info Реклама на сайте