Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности масс-спектрометрии органических соединений

    Масс-спектрометрия органических соединений предназначена преимущественно для решения структурных проблем [12П. Благодаря своим особенностям масс-спектрометрия дает информацию о молекулах, хорошо дополняющую данные других спектроскопических методов. Кроме того, масс-спектрометрия предназначена для проведения количественного изотопного анализа [1201 и для анализа смесей однотипных веществ (например, углеводородов гомологического ряда). Однако использование ее в структурном анализе, где масс-спектрометрия дает информацию о молекулярном весе, брутто- й структурной рмулах, является доминирующим. [c.288]


    В этой главе будут рассмотрены особенности масс-спектров органических соединений, регистрируемых при ионизации в условиях ЭУ. Этот метод ионизации наиболее распространен. Он позволяет получать масс-спектры с многочисленными пиками осколочных ионов, несущих большой объем информации о структуре соединения. Как отмечалось выше, другие, в основном "мягкие", методы ионизации обеспечивают получение высокостабильных молекулярных или псевдомолекулярных ионов, пики которых, как правило, доминируют в спектрах. В последнее время разработан метод активизации столкновением или масс-спектрометрия/масс-спектрометрия (см. гл. 8), который позволяет разрушать такие стабильные ионы и регистрировать достаточно многолинейные масс-спектры. В конечном счете характер масс-спектров определяется рядом факторов, от которых зависят вероятность образования катионов и катион-радикалов, а также их дальнейший распад на осколочные ионы. [c.88]

    Масс-спектрометр с ионизацией ЭУ особенно подходит для анализа органических соединений в органическом синтезе, нефтехимии, медицине, биологии, а также при анализе загрязнений окружающей среды [13, 40], т.к. дает возможность получить общую характеристику неизвестного соединения по масс-спектру, содержащему пики как молекулярных, так и осколочных ионов. Следует отметить, что основной материал по масс-спектрометрии органических соединений разных классов, накопленный и представленный в каталогах, — это,, главным образом, масс-спектры, полу ченные при анализе ЭУ. Поэтому автоматические системы обработки результатов масс-спектрометрических измерений, использующие библиотечный поиск, ориентируются именно на эти данные [81-87]. [c.847]

    Особенно высокое место среди новых способов установления состава и строения органических соединений завоевала масс-спектрометрия. Самым эффективным средством структурного анализа индивидуальных соединений, содержащихся в различных природных смесях органических веществ, в том числе и в нефти, стала хромато-масс-спектрометрия, сочетающая большую разделяющую способность хроматографических методов и идентификационную мощь масс-спектрометрии. [c.4]

    В последние годы значительные успехи в области исследования строения углеводородов были получены при помощи ряда физических методов исследования. Особенно большую роль сыграли такие методы, как ядерно-магнитный резонанс, молекулярная и масс-спектрометрия, газовая хроматография и термическая диффузия. Однако, кроме физических методов исследования, не меньшее значение имеют и химические методы, прогресс которых в последнее время, может быть, был и не столь внешне блестящ, но все же весьма существен. Бесполезно, на наш взгляд, определять преимущества тех или иных методов исследования, так как только разумное их совместное использование может привести к успеху, особенно в анализе столь сложных, многокомпонентных смесей, какими являются насыщенные циклические углеводороды нефти. Характерно, что в одной из последних больших монографий, посвященных установлению структуры органических соединений, уделяется одинаковое внимание как физическим, так и химическим методам исследования [Ц. [c.312]


    Теория химического строения учитывает особенности элемента углерода (см. 15.2). Изучение строения органических соединений остается основной задачей органической химии и в наше время. Для этого кроме химических широко применяются физические методы исследования, такие, как спектроскопия, ядер ный магнитный резонанс, масс-спектрометрия, определение электрических моментов диполей, рентге-но- и электронография. [c.274]

    В пособии представлен качественный анализ элементов и определение структурных фрагментов основных классов органических соединений, что дает возможность экспериментатору убедиться в получении вещества заданной структуры. Особенно информативными в этом отношении являются физико-химические (инструментальные) методы анализа, такие, как ИК, УФ, ЯМР спектроскопия, масс-спектрометрия, а также различные виды хроматографии, большинство из которых отражены в настоящем практикуме. [c.8]

    Все изложенное выше свидетельствует о том, что масс-спектрометрический метод позволяет получать много информации, касающейся структурных особенностей органических соединений. К сожалению, этот метод не столь универсален. Поэтому при решении структурно-аналитических задач он чаще всего используется в совокупности с другими физико-химическими методами, такими, как УФ-, ИК-, ЯМР-спектроскопия. В отличие от этих методов, которые дают сведения о наличии тех или иных функциональных групп, масс-спектрометрия представляет информацию о молекулярной массе, элементном составе, других особенностях структуры и позволяет рассматривать молекулу как субстанцию в целом. [c.199]

    Вся органическая химия посвящена установлению строения органических соединений и синтезу их на основании знания-строения и типичных реакций образования различных связей. Мы познакомились уже с идеей установления строения соединений химическими методами, которые и сейчас являются основными, но все больше дополняются физическими методами. Пытаясь сформулировать сущность химических методов установления строения в одной фразе, можно сказать, что они состоят в констатации родственных связей серии веществ (веществ с родственной структурой) и в выяснении строения одного или нескольких узловых веществ этой серии путем их постепенной деструкции (или, как ее иногда называют, деградации). Такой химический путь позволяет установить строение любого сколь угодно сложного вещества, однако ценой большого труда. И этот большой труд все более облегчается благодаря новым физическим методам разделения и идентификации продуктов деградации, особенно благодаря различным видам хроматографии (стр. 38). Одновременно и методом деградации и методом идентификации осколков молекулы (по их молекулярному весу) служит масс-спектрометрия (стр. 589). Разнообразные, все более развивающиеся физические методы в состоянии сильно облегчить задачу химика. Некоторые из этих методов дают возможность установить такие важные детали структуры, как характер связи, межатомные расстояния и углы, наличие или отсутствие того или иного рода взаимодействия электронных орбиталей, подобного сопряжению, наличие [c.341]

    Общий недостаток метода применения тяжелых изотопов и их масс-спектрометрического определения заключается в его невысокой чувствительности, обусловленной, главным образом, относительно большим содержанием (около 1 %) природного С. По этой причине в масс-спектре любого органического соединения с десятью атомами углерода уже содержится изотопный пик , имеющий на одну единицу массы больше, чем молекулярный ион интенсивность этого пика составляет 11 % от интенсивности [М]+. В этих условиях присутствие 2 % меченого соединения с одним атомом или С, увеличивающее интенсивность пика иона [М+1]+ до 13%, заметить практически невозможно. Положение облегчается при введении нескольких меченых атомов в том же самом спектре природная интенсивность пика иона [М + 2] + составит только 1 % от интенсивности пика [М]+, так что добавление 2 % метки 2Н2 или можно обнаружить без труда. Однако и в этом случае точность определения невелика. Если такая точность удовлетворяет требованиям эксперимента, то масс-спектрометрия может служить очень удобным методом исследования. Таким образом, этот метод имеет хотя и ограниченные, но очень полезные сферы применения. Например, чувствительности метода масс-спектрометрии достаточно, чтобы вполне надежно определить число введенных в соединение меченых атомов, если полностью меченный в одном или нескольких положениях предшественник удается включить с разбавлением метки не более, чем в 50 раз, Масс-спектрометрия особенно удобна при работе с соединениями, меченными Н, когда полное дейтерирование предшественника обычно не представляет трудностей и когда желательно избежать проявления изотопных эффектов наглядным примером является широкое использование [Ме 2Нз] метионина для изучения процессов С-метилирования. [c.475]


    Эти методы весьма многочисленны и разнообразны, но наиболее эффективными среди них можно считать в настоящее время оптическую спектроскопию (УФ- и ИК-спектры), спектроскопию ЯМР и масс-спектрометрию. Хорошо известны те широкие возможности, которые открываются при использовании этих методов, особенно для изучения строения сложных органических соединений, где в целом ряде случаев важные успехи были достигнуты исключительно благодаря применению спектроскопии. [c.5]

    В анализе геохимических объектов ГХ—МС получила значительно большее распространение, чем обычные аналитические методы молекулярной масс спектрометрии Это объясняется тем что этот метод позволяет определять индивидуальные сое динения вплоть до стереоизомеров Эти данные, особенно для некоторых соединении, являющихся биологическими метками, имеют особую важность, так как дают представление о происхождении и превращениях органического материала в процессе осадкообразования, а также о его последующих трансформациях [c.158]

    Благодаря особому строению насыщенной цепи природного полиизопрена эти соединения принимают за биологические метки [1]. Действительно, особенности их строения и высокие концентрации в различных нефтях убедительно свидетельствуют в пользу их биогенного происхождения. В последние годы появилось достаточно большое количество работ, посвященных определению изопреноидных углеводородов как в нефтях, так и в органическом веществе осадочных пород. Большую роль в определении этих углеводородов сыграли методы молекулярной масс-спектрометрии и капиллярной хроматографии. [c.18]

    В 1973 г. в одном немецком научном журнале появилась статья Система газовый хроматограф — масс-спектрометр — ЭВМ как пример аналитической химии будущего . В статье обсуждаются большие перспективы такой автоматизированной аналитической системы, она особенно хороша для анализа сложных смесей органических соединений. Именно эта комбинация выбрана в США для оснащения государственных лабораторий контроля качества природных вод. Другая система из тех же компонентов используется в США для идентификации лекарственных веществ и их метаболитов, содержащихся в организме человека, например в крови. Установка позволяет быстро идентифицировать более 400 лекарств, их метаболитов, естественных веществ, содержащихся в организме, и различных примесей. [c.93]

    ИК-спектроскопия — один из наиболее информативных н чувствительных методов анализа сложных смесей органических соединений, какими являются нефть и ее фракции. Особенно эффективно использование ИК-спектроскопии (ИКС) в сочетании с другими современными инструментальными методами анализа хроматографией, ЯМР- и масс-спектрометрией — и последующей обработкой данных на ЭВМ. [c.18]

    Большое разнообразие органических соединений, которые могут быть введены в масс-спектрометр, также значительно расширяют диапазон применения метода. Масс-спектрометрический метод особенно удобен при исследовании соединений, обладающих низкой летучестью, поскольку в ионизационной камере может поддерживаться достаточно низкое давление. [c.489]

    Указанные положительные особенности метода определения углеродного скелета обусловили его широкое применение для анализа различны типов органических соединений. Метод гидрирования, который является основным из применяемых для установления углеродного скелета, используют также в сочетании с масс-спектрометрией, что существенно облегчает проведение аналитического исследования. С целью установления [c.120]

    Интенсивное применение в течение последних двух десятилетий физических методов, в частности спектроскопии в ультрафиолетовой и инфракрасной областях, а позднее ЯМР-спектроскопии, способствовало большому прогрессу и, возможно, даже произвело революцию в области установления структуры органических молекул, особенно молекул природных соединений. В противоположность указанным выше методам масс-спектрометрии уделяли очень мало внимания как в химии природных соединений, так и в органической химии в целом, несмотря на то что за последние десять лет начали выпускаться масс-спектро-метры очень высокого качества. Такое положение создалось, вероятно, частично потому, что масс-спектрометры благодаря высокой точности и хорошей воспроизводимости масс-спектров являются превосходными точными приборами для количественного анализа и их широкое ирименение для этих целей не стимулировало поисков новых областей применения метода. Большинство химиков-органиков до сих пор еш е рассматривает масс-спектрометрию как метод количественного анализа газообразных или низкокипящих углеводородов, определения стабильных изотопов в газообразных продуктах деградации и, конечно, как метод определения молекулярных весов. [c.300]

    Материал, содержащийся в предыдущих разделах, следует рассматривать как попытку показать те большие возможности, которые заложены в методе масс-спектрометрии применительно к органической химии. Особое внимание в этом обзоре уделялось применению метода к определению структур природных соединений. Однако значение масс-спектрометрии для синтетической органической химии также совершенно очевидно, особенно если вспомнить, как часто возникают сомнения относительно строения продукта реакции. [c.363]

    Другая особенность книги — ее предельная практическая направленность. Подробно рассматриваются и хорошо иллюстрируются различные приемы, используемые при установлении строения органических соединений. Несмотря иа отсутствие доказательств структуры ионов, автор соглашается с тем, что для объяснения направления распада удобно разбирать конкретную условную структуру иона. Такой подход — выяснение характеристичных схем распада для родственных соединений — оказался чрезвычайно плодотворным в органической масс-спектрометрии. Джонстон уделяет большое внимание химическим методам в масс-спектрометрии. Следует особо отметить прием направленного изменения фрагментации, состоящий в исследовании производных неизвестного соединения, имеющих характеристичную схему фрагментации. Подробно разбирается также химическая модификация соединений с целью повышения их летучести (чтобы предотвратить возможные термические изменения образца на нагретых стенках прибора) и повыше- [c.7]

    Одно из наиболее серьезных ограничений использования масс-спектрометра для идентификации и установления структуры органических соединений — сходство масс-спектров изомеров, особенно геометрических. Эта проблема может быть решена одновременным применением различных видов масс-спектрометрии (например, электронный удар и ионизация в поле). [c.281]

    Указанные особенности делают масс-спектрометрию универсальным методом, необходимым как для глубокого исследования структуры органических соединений, так и для определения числа компонентов сложных систем. [c.218]

    Одной из вал нейщих особенностей масс-спектрометрии органических соединений является наличие и широкое использование двух относительно независимых систем представления масс ионов. Любая частица (в масс-спектрометрии непосредственно детектируются только ионы) может быть охарактеризована важнейшим аддитивным свойством — массой. За атомную единицу массы (а.е. м.) принимают /12 часть массы атома основного изотопа углерода С. В1ыраженные в такой шкале массы атомов различных изотопов других элементов нецелочисленны и для одиннадцати основных элементов-органогенов приводятся в табл. 1.1 с шестью значащими цифрами после запятой. Суммируя эти величины, можно рассчитать массы любых более сложных частиц. Подробные таблицы точных атомных масс известных стабильных изотопов всех химических элементов (с 3—5 значащими цифрами после запятой) приведены в справочнике [1]. [c.7]

    Указанные особенности масс-спектрометрии высокого разрешения делают этот метод мощным инструментом установления состава и строения молекул органических соединений. Однако эти возможности могут быть в полной мере реализованы лишь при масс-спек-грометрическом анализе индивидуальных соединений. Уже при [c.178]

    В разведочном анализе такой подход к интерпретации масс-спектров возможен, но не исключает применения различных спектроструктурных корреляций, аналогичных известным для других видов спектроскопии. Даже при ионизации электронным ударом около 85% охарактеризованных масс-спектрами органических соединений дают надежно выявляемые сигналы молекулярных ионов. Следовательно, масс-спектрометрия является наиболее надежным методом установления молекулярных масс исследуемых веществ. Для интерпретации совокупностей сигналов осколочных ионов рекомендованы специальные таблицы характеристических массовых чисел и характеристических разностей. Особенности их применения (см., например, [300]) по объективным причинам требуют некоторого опыта работы и масс спектрометрической квалификации аналитика. [c.315]

    Изопреноидные углеводороды. Наиэолее важным открытием в области химии и геохимии нефти за лоследние два десятилетия было обнаружение в нефтях алифатических изопреноидных углеводородов. Первые публикации об этом относятся к 1961 — 1962 гг. Затем изопреноидные углеводороды были обнаружены в различных нефтях, бурых углях и сланцах, в современных осадках и в битумоидах дисперсного органического вещества осадочных пород различного возраста. Число публикаций о содержании изопреноидных углеводородов в различных каустобиолитах растет из года в год. Благодаря особому строению, характерному для насыщенной регулярной цепи полиизолрена, эти соединения получили название биологических меток или биологических маркирующих соединений. Действительно, особенности их строения и высокая концентрация в различных нефтях убедительно свидетельствуют в пользу биогенной природы последних. Методами капиллярной газожидкостной хроматографии и химической масс-спектрометрии обнаружены все 25 теоретически возможных углеводородов изсиреноидного строения, каждый из которых определен количественно. [c.39]

    В последние годы чрезвычайно возросла роль хроматографических методов при исследовании органических соединений. Методами хроматографии (особенно газо-жидкостной) были решены многие аналитические задачи количественного анализа, однако проблемы идентификации неизвестных соединений могут быть успешно реигены лишь в сочетании с методами инфракрасной, ультрафиолетовой и масс-спектрометрии [225, 226]. [c.127]

    Идентификация следовых соединений в воде В настоящее время придается большое значение изучению природных и син тетических органических соединений в водах, особенно в питье вых [354] Решение этой проблемы во многом облегчается бла годаря применению ГХ — МС метода для разделения и иденти фикации компонентов весьма сложных смесей Шейкельфорд и Кейт [355] в 1976 г, используя ГХ—МС метод, идентифицировали сотни соединений на уровне концентраций 10 % и мень ше, и список этих соединений непрерывно пополняется Обзор ГХ—МС методов определения углеводородов в воде приведен в работе [356] Эти методы, реализуемые на хромато масс спектрометрах с эффективными капиллярными колонками и системами обработки данных на базе ЭВМ, позволяющими выделять ионные масс хроматограммы и масс спектры компонентов на фоне шумов и реализовать различные алгоритмы библиотечного поиска и идентификации соединений обеспечивают определение летучих соединений в образцах природной и питьевой воды на уровне концентрации менее 1 мкг в 1 л воды Методы количественного определения основаны, как правило, на многоионном детектировании и получении масс хроматограмм по полному ионному току и отдельным пикам, а также на использова ние внутренних стандартов С помощью ХМС достигается предел обнаружения углеводородов в образцах воды 1 нг/л для каждого соединения [c.148]

    Вместо фотографической пластины можно использовать электрические детекторы (как в масс-спектрометрах для исследования органических соединений или квантометрах для спектрального анализа). Электрические методы регистрации ионных токов проще, они более экспрессны и чувствительны. Однако на фотопластине удается фиксировать одновременно информацию о большом числе составляющих пробы, что особенно важно при анализе твердых веществ. Поэтому фо-топйастина остается пока основным методом детектирования ионов. [c.213]

    Тонкослойная хроматография (ТСХ) —один из наиболее эффективных, простых и универсальных методов разделения микроколичеств многокомпонентных смесей неорганических и органических соединений. Этот метод нащел щнрокое применение в биохимии, в анализе природных соединений, фармакологии. В органической геохимии ТСХ используют при исследовании липидов, стероидов, для разделения сернистых соединений нефти [46], ароматических УВ, фенолов и т. д. [4, 88]. Хроматография в тонком слое предполагает не только фракционирование сложных смесей на классы соединений, но и разделение внутри одного класса на индивидуальные компоненты. При исследовании сложных смесей применение ТСХ особенно эффективно в сочетании с ГЖХ и физическими методами ИК-, УФ-спектроскопией и масс-спектрометрией. Хроматография в тонком слое представляет собой метод, при котором раствор разделяемых веществ пропускается через тонкоиз-мельченный активированный сорбент, нанесенный на одну сторону стеклянной пластинки, в определенном направлении на определен-цое расстояние. Поскольку анализируемые компоненты, содержащиеся в жидкой фазе, по-разному удерживаются сорбентом, при движении растворителя происходит разделение (рис. 44). [c.114]

    II часть посвящена масс-спектральным методам анализа. В настоящее время масс-спектрометрия стала, пожалуй, самым распространенным и универсальным аналитическим методом, в особенности после сочленения масс-спектрометра с хроматографом и создания хромато-масс-спектрометра с машинной записью и обработкой результатов по заданной программе. Работы, посвященные применению этого метода в том или ином виде, занимают основное место-в сборнике. Описаны методики хромато-масс-спектрометрического исследования индивидуальных соединений и смесей олефиновинафтенов, основанные на использовании микрореактора гидрирования методики качественного и количественного анализа группового состава углеводородных и гетероатомных соединений нефтяных фракций, твердых горючих ископаемых, рассеянного органического вещества осадочного чехла продуктов переработки нефти и др. Рассмотрены конкретные методики анализа указанных продуктов с использованием ЭВМ. Разобран вопрос о точности предлагаемых методик группового-анализа. Приводится подробный разбор конкретных примеров с детальным анализом всех особенностей методов для получения первичной информации о химическом составе и сделаны выводы, демонстрирующие применимость предложенных методов для решения широкого круга химических и геохимических задач. [c.4]

    Исследование смесей органических соединений — наиболее часто встречающаяся задача органического анализа, так как подавляющее большинство объектов исследования в лабораторной практике — природные и биологические объекты, сырье и продукты химических производств — представляют собой смеси. Наиболее сложными (как по составу, так и по строению компонентов) являются смеси нефтяного происхождения. В настоящее время в процессы переработки вовлекаются все более тяжелые части нефти, поэтому в центре внимания аналитиков оказались высокомолекулярные и гетероатомные нефтяные соединения — компоненты высококипящих и остаточных фракц ш перегонки нефти. Исследование таких смесей проводится с использованием широкого набора самых современных инструментальных методов — газовой и ншдкостной хроматографии, масс-спектрометрии, абсорбционной спектроскопии оптического диапазона, люминесценции, спектрометрии ядерпого магнитного резонанса и многих других. Несмотря на специфику каждого конкретного метода, анализ высокомолекулярных смесей сопряжен с рядом методических особенностей, имеющих общий, не зависящий от используемого метода характер. [c.4]

    Несмотря на то что такие элементы, как сера и галогены, сравнительно часто входят в состав органических соединений, мы сочли возможным не включать их в рассмотрение, поскольку это повлекло бы за собой значительное увеличение размеров таблицы. Присутствие любого из этих элементов легко может -быть обнаружено благодаря необычно высокой относительной распространенности изотопов с массой (X-f 2), где X —масса основного изотопа. Интенсивность пиков ионов, содержащих изотопы, зависит от числа атомов присутствующих элементов. Эти ионы чрезвычайно характерны и легко могут быть обнаружены, что иллюстрируется приведенными ниже примерами, поэтому задача определения количества атомов серы, хлора или брома сравнительно проста. Если известно количество атомов серы или галогенов, то часть массы молекулы, приходящаяся на долю этих атомов, вычитается из измеренного значения массы, и число возможных комбинаций оставшихся атомов в молекуле обычно уменьшается до 2 или 3 путем сравнения оставшейся массы с соответствующими массовыми числами в таблице. Необходимо только рассчитать отношения распространенностей для небольшого числа комбинаций атомов, состоящих из соответствующего количества атомов углерода, водорода, кислорода и азота, которые затем добавляются к ранее установленным для атомов серы и галогенов. Такой расчет довольно сложен и трудоемок, но он может быть проведен на основе использования изотопных соотношений для углерода, водорода, кислорода и азота, представленных в приложении 1. Массы различных комбинаций атомов определяются простым арифметическим подсчетом. Значения масс основных изотопов элементов, используемых в таблице, следующие Щ = 1,008145 = 12,003844 = 14,007550. Эти величины были приведены Огата и Мацуда [1530], но могут быть в настоящее время уточнены наибольшее изменение имело место для (приложение 2). Использование старых цифр дает небольшую разницу при уровне точности, необходимом при химическом анализе, особенно если иметь в виду, что при измерении масс с использованием масс-спектрометра путем сравнения неизвестной массы с известной необходимо, чтобы разница между ними была возможно меньше, а числа углеродных атомов в сравниваемых ионах мало бы отличались одно от другого. [c.301]

    В органической масс-спектрометрии обычно наблюдаются однозарядные положительные ионы, но иногда образуются ионы и с двумя, тремя или большим числом зарядов, так что соответствующие отношения массы к заряду составляют половину, одну треть пли меньшне доли масс. Молекулярному иону с одним положительным зарядом соответствует масса т, а с двумя положительными зарядами — т/2. Двухзарядные ионы — довольно общее явление, особенно в масс-спектрах ароматических соединений , тогда как ионы с большим числом зарядов [c.24]

    Необходимость исследования термически нестабильных и высокомолекулярных органических соединений, возникшая с проникновением масс-спектрометрии в разлйчные области органической химии, особенно химии природных соединений, вызвало к жизни способ испарения вещества непосредственно в область ионизации. Такая система прямого ввода исследуемого вещества в источник в настоящее время окончательно заменила классические напускные системы при анализе природных соединений и сильно потеснила их дал<е в области исследования термически устойчивых веществ, благодаря большей скорости введения и меньшей затрате вещества [65]. [c.39]

    В простых и сложных триметилсилиловых эфирах нет взаимодействия за счет водородных связей, что имеет место в спиртах и карбоновых кислотах. Так, несмотря на возрастание молекулярной массы при образовании силилового эфира из спирта (или кислоты) не всегда происходит возрастание температуры кипения. Например, низшие спирты — метанол и этанол (но не пропанол и высшие гомологи), а также низшие кислоты — уксусная, про-пионовая и масляная — все имеют более высокие точки кипения, чем их триметилсилиловые эфиры. Еще более ярко это проявляется в случае диолов и полиолов, среди которых даже гексаметилен-глйколь имеет более высокую температуру кипения (на 15°С), чем его бис(триметилсилиловый) эфир. Различие для глицерина еще выше (на 60 °С), а для глюкозы оно настолько велико, что возможна перегонка пентакис (триметилсилилового) эфира (т. кип. 117°С при 0,1 мм рт. ст.). Таким образом, силиловые простые и сложные эфиры, в особенности таких соединений, как сахара, пептиды, полигидроксистероиды и антибиотики, почти всегда более удобны для газо-жидкостной хроматографии, чем свободные гидроксисоединения. Повышенная летучесть силильных производных используется также в масс-спектрометрии (где пики М+— 15 обычно сильны, а пики очень слабы). Наконец, силильные производные лучше растворимы в органических растворителях — факт, облегчающий проведение многих реакций даже в fex случаях, когда силильные группы непосредственно не участвуют в реакции. [c.113]

    Применение масс-спектрометров в органическом анализе началось только с 40-х годов, когда нужда во всех видах продуктов нефтепереработки дала громадный толчок для быстрого развития всех методов количественного анализа, особенно относяш,ихся к области углеводородов. Впервые широкое применение масс-спектрометрия как аналитический метод получила в нефтеперерабатывающей промышленности. Масс-спектрометр использовался для количественного определения компонентов смесей газообразных веществ. Задача состояла не в идентификации неизвестных соединений все компоненты смеси были идентифицированы другими путями и количества большинства из них можно было с достаточной точностью определить иными методами. Использование масс-спектрометра обусловливалось скорее тем, что он обеспечивал большую скорость и точность анализа по сравнению с другими методами [96, с. 297]. Первый пример анализа углеводородной смеси (с предельным содержанием углерода 4) был опубликован Гувером и Уошберном в 1940 г., а в 1943 г. они сумели проанализировать смесь пентанов и нонанов из 9 компонентов за 4 с четвертью часа, тогда как ректификационный способ исследования того же образца с определением показателя преломления узких фракций требовал 240 часов, причем на регистрацию спектра у Гувера и Уошберна ушло только 45 минут. Вычислительная техника впоследствии сделала этот метод еще более привлекательным, так как позволила значительно сократить время на обработку результатов. [c.254]

    Трудности прямого хроматографирования альдегидов связаны с тем, что в системе газового хроматографа или хромато-масс-спектрометра формальдегид легко полимеризуется, особенно при температурах ниже 100°С и в присутствии других полярных соединений. Этим можно объяснить плохую открываемость формальдегида методом ГХ/МС и заниженные результаты при его определении методом газовой хроматографии [71]. Поэтому в аналитической практике для этой цели чаще применяют метод РГХ, а для получения удобных для хроматографирования органических производных карбонильных соединений используется около 20 различных реагентов. Наиболее популярным из них является 2,4-динитрофенилгидразин (2,4-ДНФГ), [c.307]

    По применению в газовой хроматографии ЭЗД находится на третьем месте, но он до сих пор удерживает пальму первенства в надежной идентификации и определении галогенсодержащих ЛОС, особенно хлорсодержащих органических пестицидов. В качестве примера можно привести анализ городского воздуха рядом со свалкой отходов производства линдана [128]. После улавливания в комбинированном патроне с 0,3 г тенакса и пенополиуретановым фильтром галогеносодержащих ЛОС (изомерные гексахлорциклогеса-ны и хлорбензолы) эти токсичные соединения хроматографировали с использованием в качестве детекторов ЭЗД и масс-спектрометра. Основным загрязняющим воздух веществом оказался а-гексахлорциклогексан, а количество идентифицированных хлорбензолов было на уровне следов. [c.417]

    Для извлечения загрязнителей из почвы применяют несколько методов. В случае газовой хроматографии и ГХ/МС (см. главы I и V) чаще всего используют термодесорбцию (особенно в мягких условиях, чтобы избежать артефактов). Почву высушивают, помещают в стеклянную широкую трубку и нагревают до 150— 250°С при одновременном пропускании через трубку тока инертного газа (азот, гелий или аргон). Десорбированные при нагревании примеси органических соединений улавливают в сорбционной трубке с полимерным сорбентом (чаще всего тенаксом ОС или тенаксом ТА), переносят сорбционные трубки в систему газового хроматографа или хромато-масс-спектрометра и после повторной термодесорбции и криофокусирования (см. главу V) проводят хроматофафический анализ зафязнений почвы. [c.164]


Смотреть страницы где упоминается термин Особенности масс-спектрометрии органических соединений: [c.200]    [c.274]    [c.4]    [c.6]    [c.104]    [c.25]    [c.590]   
Смотреть главы в:

Интерпритация масс-спектров органических соединений  -> Особенности масс-спектрометрии органических соединений




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Масса органическая



© 2024 chem21.info Реклама на сайте