Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Заряды притяжения

    Потенциальная энергия двух противоположно заряженных ионов на этом расстоянии равна 2 кТ, при этом кинетическая энергия недостаточна для преодоления взаимного притяжения ионы остаются связанными в пару, которая не участвует в электропроводности, хотя и не является настоящей молекулой. Можно подсчитать число ионов, которые находятся вокруг иона противоположного знака между критическим расстоянием д и расстоянием наибольшего сближения. Таким способом определяется число ионных пар, степень их диссоциации и константа диссоциации ионных пар по закону действия масс. Б воде при 25° С для одно-одновалентного электролита критическое расстояние невелико (( = 3,57 А), число ионных пар очень мало, имеется почти полная диссоциация. Для ионов с большими зарядами, а также в растворителях с небольшой диэлектрической проницаемостью величина д имеет большие значения, и ассоциация увеличивается. Ассоциация зависит также от радиуса ионов и растет с уменьшением этого радиуса (т. е. увеличением расстояния наибольшего сближения), Так, в растворах ЬаРе (СМ) 6 в смешанных растворителях, диэлектрическая проницаемость которых О <57, константа диссоциации ионных пар уменьшается с уменьшением О в количественном согласии с теорией. Это падение константы лежит в пределах от 10" до 10 . В растворе с /п=0,01 степень диссоциации ионных пар по мере уменьшения О изменяется от 0,3 до 0,03 число ионных пар очень велико. В водных растворах с 0 = 81 содержание ионных пар при малых концентрациях составляет доли процента. [c.416]


    Интересно отметить, что в СКН атом водорода при углероде, связанном с нитрильной группой, более реакционноспособен в свободно радикальных реакциях, чем а-метиленовый водород, так как в первом случае заселенность электронами связи С—Н меньше, заряды на атоме Н примерно одинаковы. Атом С в первом случае несет малый положительный заряд (как следствие электростатического отталкивания атомов С и Н), а во втором случае — отрицательный заряд (притяжение атомов С и Н). Если сравнить подвижность атома Н в а-положении к нитрильной группе и подвижность атома Н в молекуле СКД (СКИ), находящегося Б а-положении к двойной связи, то оказывается, что первый более реакционноспособен. Этим и объясняется большая скорость вулканизации СКН. В случае ионного отщепления атома Н а) при атаке электрофилами легче отрывается атом Н от а-метиленовой группы, так как атакуемый атом С несет отрицательный заряд б) при атаке нуклеофилами легче оторвется атом Н от атома углерода, связанного с нитрильной группой, так как этот атом С несет положительный заряд [2]. [c.88]

    Зависимость потенциала нулевого заряда от состава электролита объясняется адсорбцией ионов и полярных молекул на поверхности электрода, что приводит к образованию двойного электрического слоя и возникновению скачка потенциала внутри электролита около поверхности металла (рис. XX, 9). На рис. XX, 9, а схематически изображена адсорбция анионов I из раствора, содержащего К1, на поверхности металла, имеющего потенциал нулевого заряда. Притяжение ионов [c.509]

    Элементарной структурной ячейкой силикатов является кремнекислородный тетраэдр такие тетраэдры могут образовывать циклические, цепные, листовые и трехмерные каркасные структуры. Часть атомов кремния способна замещаться алюминием, но при этом компенсация заряда требует введения дополнительных катионов, что приводит к усилению электростатического вклада в химическую связь кристалла. На примере силикатов иллюстрируются четыре из пяти типов связи, обсуждавшихся в данной главе ковалентная связь между атомами кремния и кислородом в тетраэдрах, вандерваальсовы силы между силикатными листами в тальке, ионное притяжение между заряженными листами и цепочками, а также водородные связи между молекулами воды и силикатными атомами кислорода в глинах. Если включить в этот перечень еще никелевые катализаторы на глиняном носителе, то мы охватим и пятый тип химической связи (металлический). [c.640]


    Явление коацервации может наблюдаться в самых различных коллоидных растворах, если создать необходимые условия для его возникновения. В частности, коацервацию вызывает добавление к коллоидному раствору какого-нибудь водоотнимающего агента (спирт, ацетон) или какой-либо соли, в результате чего происходит частичная нейтрализация заряда коллоида. Всего легче коацервация наступает при смешивании двух коллоидных растворов, содержащих противоположно заряженные частицы. Обусловленные различным знаком заряда, притяжение коллоидных частиц оказывается более мощным, чем стабилизирующее влияние сольватационных оболочек, окружающих коллоидные мицеллы. [c.57]

    На примере кристаллического осадка это легко проиллюстрировать следующей схемой (рис. 15). Если рассмотреть схематический разрез кристалла, в котором положительные ионы правильно чередуются с отрицательными, то очевидно, что положительный ион А, находящийся внутри кристалла, окружен в пространстве шестью отрицательными ионами (а, 6, с, и двумя ионами, находящимися в соседних плоскостях) и является электростатически уравновешенным. Напротив, положительный ион В на поверхности кристалла испытывает притяжение лишь пяти отрицательных ионов (/, а, / и двух ионов, находящихся в соседних плоскостях), т. е. он обладает избыточным положительным зарядом, за счет которого может притягивать отрицательные ионы из раствора. Сказанное относится и к отрицательно заряженным ионам. Поверхность осадка притягивает из раствора и катионы, и анионы (а также [c.110]

    Таким образом, образование химической связи в Нз обусловлено тем, что электрон двигается около двух ядер между ядрами появляется область с высокой плотностью отрицательного заряда, который стягивает положительно заряженные ядра. Притяжение уменьшает потенциальную энергию системы, а следовательно, и полную энергию системы — возникает химическая связь.  [c.46]

    В присутствии нейтральных солей в растворе реакционная способность веществ изменяется. Следует ожидать, что ионная атмосфера будет оказывать влияние на процесс столкновения ионов в свою очередь при наличии соли ионная атмосфера будет изменяться. Число столкновений между ионами противоположного по знаку заряда увеличивается в присутствии солей, которые способствуют электростатическому притяжению, и уменьшается при действии солей, видоизменяющих ионную атмосферу так, что электростатическое притяжение уменьшается. Этот эффект, [c.82]

    Сравнивая силы притяжения молекул вещества между собой с силами притяжения между этими молекулами и молекулами зоды, можно определить, насколько растворимо это вещество в воде. Но ч го является причиной такого притяжения Существенный вклад в это явление вносит распределение электрического заряда в молекуле. [c.76]

    Таким образом, каждый гидратированный ион стабилизируется ближайшим окружением зарядов, противоположных по знаку его собственному заряду. Когда кристалл соли растворяется в воде, притяжение между ионами с зарядами противоположного знака в кристалле нарушается. Взамен возникают аналогичные силы притяжения между ионами и гидратирующими их молекулами воды. Растворимость кристаллов солей является [c.209]

    Однако экспериментальное значение ЭИ, для Не намного меньше, а именно 2372 кДж-моль Хотя сильное притяжение Ь-электрона к ядру Не с зарядом + 2 частично компенсируется электрон-электронным отталкиванием, ЭИ, все же очень велика, и это показывает, насколько сильно связан каждый электрон в атоме Не. [c.393]

    Два атома водорода, находящиеся на большом расстоянии друг от друга, не оказывают взаимного влияния. Но при сближении они начинают взаимодействовать. Два ядра с одинаковыми положительными зарядами отталкиваются, и два электронных облака также отталкиваются друг от друга. Однако самым важным взаимодействием оказывается притяжение между ядром одного атома и электронным облаком другого атома. При сближении атомов их электронные облака втягиваются в область между ядрами (рис. 12-1, г). Комбинация двух ядер и двух электронов устойчивее (имеет более низкую энергию), чем два изолированных ядра, каждое со своим электроном. Чем больше сближаются ядра, тем больше возрастает в пространстве между ними электронная плотность, тем ниже становится [c.511]

    Упомянутые выше нарушения нормального порядка заполнения энергетических состояний в атомах лантана (появление Ъс1-, а не 4/-электрона) и керня (появление сразу двух 4/-электр(люи) и аналогичные особенности в построении электронных структур атомов элементов седьмого периода объясняются следующим. При увеличении заряда ядра электростатическое притяжение к ядру электрона, находящегося на данном энергетическом подуровне, становится более сильным, и энергия электрона уменьшается. При этом энергия электронов, находяншхся на разных подуровнях, иэмеипстся неодинаково, поскольку по отношению к этим электронам заряд ядра экранируется в разной степени. В частности, энергия 4/-электронов уменьшается с ростом заряда ядра более резко, чем энергия 5 -электроиов. (см. рис. 24). Поэтому оказывается, что у лантана (2 = 57) энергия 5с электронов ниже, а у церия (2 = 58) выше, чем энергия 4/-электронов. В соответствии с этим, элек- [c.98]


    Ионная связь. Связь такого типа осуществляется в результате взаимного электростатического притяжения противоположно заряженных ионов. Ионы могут быть простыми, т. е. состоящими из одного атома (например, катионы Ма+, К , анионы Р , С1") или сложными, т. е. состоящими из двух или более атомов (напрнмер, катион ЫН , анионы ОН, N03, 504 ). Простые ионы, обладающие положительным зарядом, легче всего образуются из атомов элементов с низким нотеициалом ионизации к таким элементам относятся металлы главных подгрупп I и II группы (см. табл. 4 и 5 на стр. 102). Образование простых отрицательно заряженных ионов, напротив, характерно для атомов типичных неметаллов, обладающих большим сродством к электрону. Поэтому к типичным соединениям с ионным типом связи относятся галогениды щелочных металлов, например, МаС1, СзР и т. п. [c.150]

    Зависимость потенциала нулевого заряда от состава электролита объясняется адсорбцией ионов и полярных молекул на поверхности электрода, что приводит к образованию двойного электрического слоя и возникновению скачка потенциала внутри электролита около поверхности металла. На рис. 37 схематически показана адсорбция анионов из 1-м. растворов, содержащих На2504, КС1, КВг, К1, Кг5, на поверхности металла вблизи потенциала нулевого заряда. Притяжение катионов натрия и калия к слою адсорбированных анионов приводит к образованию двойного электрического слоя у поверхности металла и к появлению скачка потенциала. 14-1016 209 [c.209]

    Как видно из рис. 2, значения 0о (находящиеся между 0л и 0д) действительно снижаются при росте потенциала поверхности кварца. Введение в раствор добавки 5 10 моль/л додецилсульфата натрия (NaDS) приводит к снижению 0о до 6° уже при pH 3, что обусловлено адсорбцией анионогенного NaDS на обеих поверхностях пленки и усилением электростатического отталкивания одинаково заряженных поверхностей. Напротив, введение катионактивного цетилтриметил-аммония бромида (СТАВ) приводило при концентрации 10 х X 10 моль/л к резкому повышению значений 0ц, превышавших 45°. Это связано с тем, что при данной концентрации СТАВ адсорбируется только на поверхности пленка — воздух, сообщая ей положительный заряд. Притяжение разнозаряженных поверхностей пленки (/7 < 0) приводит к сдвигу -ветви изотермы в область Я < О, что увеличивает отрицательные значения интеграла в уравнении (2), вызывая рост краевых углов. [c.27]

    Таким образом, можно сформулировать условия, ведущие к изменению смачивания водой твердых поверхностей. Влиять на вид изотерм П(/1) смачивающих пленок воды можно в основном за счет двух эффектов — зарядовых (Пе) и структурных (П ). Молекулярные силы, зависящие от спектральных характеристик воды и твердой подложки, мало чувствительны к составу водного раствора, температуре и заряду поверхностей. Поэтому для данной твердой подложки значения Пт практически постоянны. Влиять на структурные силы можно посредством трех факторов повышением концентрации электролита и температуры, что ведет к уменьшению структурного отталкивания, а также путем адсорбции молекул ПАВ, что изменяет характер взаимодействия молекул воды с твердой поверхностью. Ухудшение смачивания, необходимое для повышения эффективности флотации, достигается обычно путем адсорбции поногенных ПАВ. При этом важно, чтобы ПАВ избирательно адсорбировалось на одной из поверхностей пленки, придавая ей заряд, обратный по знаку заряду другой поверхности. В этом случае возникают силы электростатического притяжения (Пе<0), что сдвигает изотерму в область П-<0. Адсорбция ПАВ может приводить одновременно и к гидрофобизации твер- [c.217]

    С переходом от выражения Ri- Ri для оптимального межмолекулярного контакта к выражению 2 RiRj модель усложняется. Наглядно это можно представить себе следующим образом если при неизменном F и переменном X молекула Oi обтекает молекулу Оо, т. е. движется вокруг нее с сохранением оптимального межмолекулярного расстояния, то при контакте одноименных атомов они соприкасаются ван-дер-ваальсовыми сферами, а при контакте разноименных атомов их сферы слегка перекрываются и молекула Oi несколько проваливается внутрь молекулы Оо. Этому можно дать следующее объяснение разноименные (особенно существенно различные по размерам) атомы часто несут на себе противоположные заряды, притяжение которых стимулирует сближение атомов. [c.151]

    Атомные радиусы убывают в последовательности 8 > С1 > Аг, поскольку при переходе от 8 к С1 и от С1 к Аг заряд ядра возрастает на единицу. В пределах одного периода валентные электроны сильнее притягиваются к ядру с возросшим положительным зарядом, поэтому атомные радиусы соответственно уменьшаются. Для изоэлектронных (имеющих одинаковое число электронов) атомных и ионных частиц эффективные радиусы уменьшаются по мере возрастания заряда ядра (порядкового номера элемента), так как и в этом случае происходит последовательное увеличение притяжения электронов к ядру. Таким образом, указанные изоэлек-тронные частицы в порядке уменьшения эффективных радиусов располагаются в следующий ряд 8 > С1 > Аг > К > Са .  [c.405]

    Как ввести второй вещество Здесь явное противоречие не должно быть посторонних веществ, чтобы не ухудшались характеристики маховика, и должно быть второе вещество, чтобы маховик стал вепольной системой. Решение второе вещество — тоже стальная лента, т. е. маховик получен намоткой двойной ленты. Красиво, не прада ли Второе вещество введено без всякого усложнения системы... Однако само по себе введение втородз вещества еще ничего не дает. Было, скажем, 800 одинарных витков, стало 400 витков двойных. Веполь попрежнему неполный, нет взаимодействия между витками (точнее есть только клеевое взаимодействие, которое было и раньше). Нужно ввести поле. Какое поле сожмет две металлические ленты, притянет одну ленту к другой Ответ очевиден электрическое поле, силы взаимного притяжения разноименных зарядов. Клей, помимо своей основной функции, будет работать как диэлектрик между двумя проводниками. Это — изобретение по а. с. 1084522. [c.102]

    Как уже отмечалось, н полупроводника <, в отличие от металлов имеется два рода носителей заряда отрицательные--электроны и положительные — дырки. Поэтому проводпнкн по ряду свойств похожи на электролиты, где также присутствуют отрицательные и положител( Пые носители электричества — апиопы и катионы. Эта аналогия обнаруживается и и строении двойного электрического слоя, В ре.чультате наложения сил теплового движения и сил взаимодействия (притяжения и отталкивания) с поверхностью полупроводника внутри песо вблизи Гранины раздела устанавливается диффузное распределение зарядов и возникает так называемый объемный заряд. Таким образом, двойной электрический слой на границе раздела включает в себя как бы два слоя Гуи — один в раство- [c.274]

    Ненаправленность и ненасыщаемость ионной связи. Электрические заряды ионов обусловливают ИХ притяжение и отталкивание и в целом определяют стез иометрический состав соединения. Ионы можно представить как заряженные шары, силовые поля которых равномерно распределяются во всех направлениях в пространстве. Поэтому каждый ион может притягивать к себе ионы противоположного знака в любом направлении. Иначе говоря, нонная связь в отличие от ковалентной характеризуется ненаправленностью. [c.87]

    Так как коллоидные частицы имеют слабый отрицательный заряд, хлопья коагулянтов — слабый положительный заряд, то между ними возникает взаимное притяжение, способствующее формированию крупных частиц. В процессе коагуляционной очистки сточных вод происходит соосаждение с минеральными примесями за счет адсорбции последних на поверхности оседающих частиц. Из воды удаляются соединения железа (на 78—89 %), фосфора (на 80—90 %), мышьяка, цинка, меди, фтора и других. Снижение по ХПК составляет 90—93 %, а по БПКб —80—85 % Степень очистки зависит от условий воздействия на коагуляцию дисперсной системы радиации, магнитного и электрического полей, введения частиц, взаихмодействующих с системой и стабилизирующих ее. Воздействие излучения, как и окисление органических соединений озоном способствует разрушению поверхностно-активных веществ (ПАВ), являющихся стабилизаторами твердых и жидких частиц, загрязняющих сточные воды. Под воздействием электрического поля происходит образование агрегатов размером до 500—1000 мкм в системах Ж — Т, Ж] — Ж2 и Г — Т. [c.479]

    Предельным случаем поляризации адсорбенга диполем адсорбирующейся молекулы является адсорбция диполей на металлах. Если рассматривать металл как непрерывное проводящее тело, в нем возникает зеркальное изображение диполя молекулы адсорбата с противоположным расположением зарядов (рис. XVIII, 4), что вызывает притяжение. Энергия притяжения диполя и его зеркального изображения может быть вычислена по закону Кулона  [c.494]

    Если бы результирующий заряд ядра и электронов на заполненных внутренних орбиталях был сконцентрирован в той точке, где находится ядро, то Зх-, Зр- и З -орбитали в многоэлектронных атомах тоже имели бы одинаковые энергии. Но экранирующие электроны занимают значительный объем пространства. Результирующее притяжение к ядру, испытываемое электроном с главным квантовым числом 3, зависит от того, насколько он приближается к ядру и проникает ли при этом сквозь облака внутренних экранирующих электронов. Согласно зоммерфельдовской модели эллиптических орбиталей, х-орбиталь проходит ближе от.ядра, чем р-орбиталь, и поэтому оказывается более стабильной, а р-орбиталь в свою очередь более стабильна, чем -орбиталь. Именно этим объясняются различия в энергии у подуровней с разными I на энергетической диаграмме атома лития, изображенной на рис. 8-13. [c.389]

    При попадании нефтяной эмульсии в переменное электрическое поле частицы воды, заряженные отрицательно, начинают передвигаться внутри элементарной капли, придавая ей грушевидную форму, острый конец которой обращен к положительно заряженному электроду. При перемене полярности электродов капля претерпевает новое изменение формы, вытягиваясь острым концом в противоположную сторону. Подобные изменения конфигурации капля претерпевает столь часто, сколь велика частота электрического поля. Под воздействием сил притяжения отдельные капли, стремясь передвигаться в электрическом поле по направлению к положительному электроду, сталкиваются друг с другом и при достаточно высоком потенциале заряда наступает пробой оболочки диэлектрика, в результате чего мелкие капли воды укрупняются, что и облегчает их осаждение в электродегидраторе. Обезвоженная нефть поднимается и выводится сверху электродегидра тора. [c.183]

    Если два атома отличаются по присущей им способности притягивать электроны, т. е. по электроотрицательности, то электронная пара, при помощи которой между ними создается химическая связь, смещается в сторону атома с большей электроотрицательностью и на нем возникает отрицательный заряд, а на другом атоме-положительный заряд. Такие связи и молекулы, в которых они имеются, называются полярными. Полярные молекулы не только притягиваются лруг к другу, но и могут притягивать к себе положительные или отрицательные ионы. Температуры кипения и плавления веществ с полярными молекулами выше, чем можно ожидать, судя только по величине вандерваальсовых сил притяжения, поскольку полярность молекул обусловливает появление дополнительных сил межмолекулярного притяжения. [c.52]

    Достоверность модели Резерфорда была подтверждена дальнейшими исследованиями. Атомное ядро состоит из протонов и нейтронов (рис. 8-3). Вокруг ядра имеется ровно столько электронов, чтобы они компенсировали заряд ядра. Но классическая физика не в состоянии объяснить подобную модель атома. В самом деле, что удерживает положительные и отрицательные заряды на расстоянии друг от друга Если электроны неподвижны, электростатическое притяжение к ядру должно сближать их до получения миниатюрного варианта томсоновой модели атома. И наоборот, если электроны движутся по каким-то орбитам вокруг ядра, дело отнюдь не упрощается. Электрон, движущийся по кругу вокруг положительного ядра, представляет собой осциллирующий диполь, если рассматривать атом в плоскости такой орбиты при этом отрицательный заряд колеблется в одну и другую сторону относительно положительного заря- [c.332]

    Из-за наличия электрон-электронного отталкивания первая энергия ионизации Не менЕше, чем следовало бы ожидать для атома с зарядом ядра + 2. Этот факт и,алюстрируется следующим простым расчетом. Если не принимать во внимание эдектрон-электронное отталкивание, каждый электрон должен испытывать притяжение ядра с полным зарядом -I- 2, и тогда первую энергию ионизации можно вычислить по формуле для одноэлек- [c.391]

    В результате дополнительного электрон-электронного отталкивания спаренных Зр-электронов в атоме 8 нормальная закономерность последовательного повыщения первой энергии ионизации с ростом порядкового номера элемента в пределах периода нарущается, так что ЭИ, для Р оказывается больще, чем ЭИ, для 8. Этот факт иллюстрирует чрезвычайную устойчивость полузаполненной р-оболочки. После того как на полузаполненную оболочку начинают поступать новые электроны (после перехода от конфигурации к р ), электрон-электронные отталкивания, связанные с добавлением пятого и шестого р-электронов в С1 и Аг, оказываются недостаточно сильными, чтобы преодолеть притяжение со стороны последовательно увеличивающегося положительного заряда ядра. Поэтому энергии ионизации 8, С1, и Аг возрастают в обычном порядке (8 < С1 < Аг). [c.401]

    Большее притяжение высокого положительного заряда центрального иона к отрицательному заряду лигандов проявляется в уменьшении способности лигандов координационного комплекса связываться с другими катионами. В ряду VO , Ст01 и МпО ванадат-ион представляет собой очень сильное основание и способен связываться с протоном Н + или другими катионами. Хромат-ион также является довольно сильным основанием. Однако перманганат-ион-слабое основание соединение НМпО полностью ионизуется в воде, и поэтому кислота НМпО представляет собой одну из наиболее сильных известных кислот (см. табл. 11-2). Ванадат-ион легко вступает в реакции типа [c.216]


Смотреть страницы где упоминается термин Заряды притяжения: [c.540]    [c.360]    [c.207]    [c.123]    [c.265]    [c.471]    [c.216]    [c.438]    [c.99]    [c.104]    [c.336]    [c.26]    [c.39]    [c.51]    [c.97]    [c.98]    [c.333]    [c.389]    [c.625]    [c.150]   
Курс неорганической химии (1963) -- [ c.157 ]

Курс неорганической химии (1972) -- [ c.141 ]




ПОИСК







© 2025 chem21.info Реклама на сайте