Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химотрипсин Химотрипсин

    Особенно ощутимые успехи в исследовании движущих сил ферментативного катализа были достигнуты в случае химотрипсина . Химотрипсин — это эндопептидаза, которая в белках расщепляет пептидные связи, образованные карбонильной группой фенилаланина, тирозина и триптофана [4, 5]  [c.126]

    Дальнейшее превращение белков пищи осуществляется в тонкой кишке, где на белки действуют ферменты панкреатического и кишечного соков. Трипсин и химотрипсин действуют на белки аналогично пепсину, разрывают другие внутренние пептидные связи оба фермента наиболее активны в слабощелочной среде (pH 7,2—7,8). Благодаря гидролитическому действию на белки всех трех эндопептидаз (пепсин, трипсин, химотрипсин) образуются различной длины пептиды и некоторое количество свободных аминокислот. Дальнейший гидролиз пептидов до свободных аминокислот осуществляется под влиянием группы ферментов—пептидаз. Помимо панкреатической карбоксипептидазы, на пептиды действуют кишечная аминопептидаза и разнообразные дипептидазы. Эта группа ферментов относится к экзопептидазам и катализирует гидролиз пептидной связи по схеме  [c.425]


    Трипсин и химотрипсин обладают наиболее высокой специфичностью по отношению к субстрату, что и используется для определения стерической однородности пептидов. Трипсин расщепляет только пептидные связи, в образовании которых принимают участие карбоксильные группы аргинина и лизина. Гидролиз протекает очень медленно или вообще не идет, если эта аминокислота является N-концевой или второй от N-конца пептида. Не расщепляются пептидные связи, образованные со-за-мещенными аминокислотами, и связи Lys-Pro и Arg-Pro. Неспецифический гидролиз происходит крайне редко (ср. [2678]). Химотрипсин расщепляет главным образом пептидные связи, в образовании которых принимает участие карбоксильная группа остатка ароматической аминокислоты. Иногда имеет место и неспецифический гидролиз, например по амидным связям лей-цил—аминокислота. На гидролиз, катализируемый химотрипсином, природа всей молекулы пептида оказывает большее влияние, чем на расщепление трипсином (ср. [2678]). [c.403]

    Каталитическую функцию выполняет не вся молекула фермента, а только ее часть, названная активным центром фермента. У однокомпонентных ферментов активный центр представляет собой уникальное сочетание определенных аминокислотных остатков в какой-то части белковой молекулы. Это хорошо видно на примере химотрипсина, который содержит 246 остатков аминокислот. В активный центр фермента входит остаток серина, связанный с аспарагиновой кислотой и с глицином. Хотя в молекуле находится 26 сериновых остатков, для проявления каталитической активности важен лишь тот, который соединен с аспарагиновой кислотой и глицином. Но в то же время простой пептид, содержащий такое сочетание аминокислотных остатков (—асп—сер—глиц—), каталитической активностью не обладает. Оказывается, в активном центре химотрипсина поблизости от серина расположена активирующая его аминокислота гистидин, правда находящаяся сравнительно далеко от серина в полипептидной цепочке. Но при возникновении третичной структуры белковой молекулы остаток гистидина оказывается близко расположенным к серину, и, следовательно, в молекуле образуется комбинация аминокислотных остатков, благодаря которой осуществляется действие фермента. Такое сближение аминокислотных остатков возможно лишь в результате совершенно определенного свертывания полипептидной цепи и появления свойственной данному ферменту третичной структуры. И у двухкомпонентных ферментов каталитическую функцию выполняет активный центр, включающий кофермент. У этих [c.6]


    Химотрипсин Химотрипсин является протеолитическим [c.305]

    В терапевтических целях используются протеолитические и противовоспалительные свойства химотрипсина Химотрипсин, наряду с трипсином, часто применяется для очистки и заживления ран и ожогов и для разжижения и рассасывания тяжелой мокроты в случае легочных заболеваний. Химотрипсин используется при лечении язв желудка и язвенных колитов. В 1958 г. а-химотрипсин впервые был применен для освобождения хрусталика от катаракты. В настоящее время а-химотрипсин успешно используется для ускорения заживления ран после операций на глазном яблоке. [c.306]

    Arg 145. Эти изменения обусловливают четыре из девяти структурных особенностей, ответственных за специфичность химотрипсина. Таким образом, зимоген отличается от активного фермента отсутствием четырех детерминант специфичности , благодаря которым фермент узнает свои полипептидные субстраты. Как показал ориентировочный расчет, именно эти отличия обеспечивают 10 —10 -кратное увеличение активности химотрипсина по сравнению с зимогеном [24]. Катализу способствует также небольшое перемещение Gly 193, важное для стабилизации переходного состояния [24]. [c.43]

    Фермент химотрипсин, глобулярный белок [c.453]

    Образующийся промежуточный продукт называется ацилированным ферментом. Если бы реакция остановилась на этом, трипсин или химотрипсин представляли собой не катализатор, а реагент. Суть катализа заключается в том, что катализатор обеспечивает более легкий (и, следовательно, более быстрый) путь реакции, но в конце реакции возвращается в исходное состояние. Фермент восстанавливается на второй стадии процесса с участием молекулы воды  [c.319]

    Таким образом, и механизм каталитического действия, и специфичность к субстрату ферментов можно объяснить свертыванием их полипептидной цепи и положением на ней радикалов. Характер свертывания белковой цепи в трипсине показан на рис. 21-20. Этот фермент построен из одной непрерывной полипептидной цепи, включающей 223 аминокислоты. (В нумерацию аминокислот на рисунке внесены изменения-пропуски и вставки, чтобы привести ее в соответствие с нумерацией в химотрипсине и эластазе.) Молекула трипсина имеет приблизительно сферическую форму диаметром 45 А и чашевидное углубление с одной стороны для активного центра. На рис. 21-20 атомы аспарагиновой кислоты, гистидина и серина в активном центре изображены черными кружками. Подлежащая разрыву белковая цепь изображена цветными кружками с черными ободками, а стрелка указывает положение разрываемой связи. Жирные штриховые синие линии с двух концов субстрата указывают, что его цепь растягивается на значительную длину в обоих направлениях. Карман специфичности для радикала R изображен точечными синими линиями в правой нижней части рисунка, и поскольку иллюстрируемой молекулой является трипсин, в карман вставлена аргининовая боковая цепь, притягиваемая отрицательным зарядом аспарагиновой кислоты 189 в нижней части кармана. [c.323]

    Какой тетраэдрический промежуточный продукт образуется при расщеплении белков при помощи трипсина или химотрипсина Сколько раз за один полный каталитический цикл образуются тетраэдрические промежуточные продукты  [c.343]

    Для возбуждения спектров КР используют обычно излучение в видимой области. При этом спектры КР также находятся в видимой области, что позволяет использовать для их записи стеклянную оптику. Поскольку вода прозрачна для видимого света и очень слабо рассеивает его, она служит прекрасным растворителем для получения спектров КР- При этом доступны для исследования многие водные растворы, интересные с биологической точки зрения, для которых использование метода ИК-спектроскопии затруднительно или даже невозможно. Примером могут служить растворы а-химотрипсина и других ферментов, в спектрах КР котор были обнаружены полосы, характерные для ряда структурных элементов в этих молекулах. [c.222]

    Химотрипсин, Химотрипсин (КФ 3.4.21.1) секретируется вфор-ме профермента — химотрипсиногена поджелуд очной железой позвоночных животных активация профермента происходит в двенадцатиперстной кишке под действием трипсина. Физиологическая функция химотрипсина — гидролиз белков и полипептидов. Химотрипсин атакует преимущественно пептидные связи, образованные карбоксильными группами остатков тирозина, триптофана, фенилаланина и метионина. Он эффективно гидролизует также сложные эфиры соответствующих аминокислот. Молекулярная масса химотрипсина равна 25 ООО, молекула его содержит 241 аминокислотный остаток. Химотрипсин образован тремя полипептидными цепями, которые связаны дисульфидными мостиками. Первичная структура фермента установлена Б. Хартли в 1964 г. [c.197]

    Каталитическую активность а-химотрипсина нельзя приписать исключительно наличию системы переноса зарядов. Из рентгено структурных исследований следуют многие другие факторы, от ветственные за каталитический процесс. Было обнаружено де вять видов специфических ферментсубстратных взаимодействий которые повышают эффективность а-химотрипсина. Например стабилизация тетраэдрического интермедиата, а следовательно понижение энергетического барьера переходного состояния, со провождается образованием водородной связи между карбониль ной группой субстрата и амидным атомом Ser-195 и Gly-193 В химотрипсиногене эта водородная связь отсутствует. Действи тельно, уточнение структур химотрипсиногена и а-химотрипсина с помощью рентгеноструктурного анализа показывает различия в расположении каталитической триады в зимогене и ферменте. Это конформационное изменение в общей трехмерной структуре фермента, возможно, вызывает значительные изменения химических свойств каталитического центра, что может играть важную роль в увеличении ферментативной активности при активации зимогена. [c.221]


    Стремясь облегчить интерпретацию, пробуют установить связь между эффектом Коттона и данными рентгеноструктурного анализа. Этим методом было, например, показано высокое содержание а-спиралей в миоглобине и немного меньшее (с учэ> т-ками /3-структуры) в лизоциме, карооксипептидазе А и папаине, в то время как в ри-бонуклеазе и химотрипсине а-спиральность оказалась очень низкой. Хорошая корреляция рентгеноструктурных данных и результатов ДОВ и КД была получена на мн-оглобине и лнзоциме, т. е. на белках с высокой спиральностью, но не удалась на химотрипсине. [c.385]

    Химотрипсин. В поджелудочной железе синтезируется ряд химотрип-синов (а-, 3- и л-химотрипсины) из двух предшественников—химотрипсиногена А и химотрипсиногена В. Активируются проферменты в кишечнике под действием активного трипсина и химотрипсина. Полностью раскрыта последовательность аминокислот химотрипсиногена А, во многом сходная с последовательностью аминокислот трипсина. Молекулярная масса его составляет примерно 25000. Он состоит из одной полипептидной цепи, содержащей 246 аминокислотных остатков. Активация профермента не сопряжена с отщеплением большого участка молекулы (см. рис. 4.3). Получены доказательства, что разрыв одной пептидной связи между аргинином и изолейцином в молекуле химотрипсиногена А под действием трипсина приводит к формированию л-химотрипсина, обладающего наибольшей ферментативной активностью. Последующее отщепление дипептида Сер—Арг приводит к образованию б-химотрипсина. Аутокаталитический процесс активирования, вызванный химотрипсином, сначала способствует формированию неактивного промежуточного неохимотрипсина, который под действием активного трипсина превращается в а-химотрип-син этот же продукт образуется из б-химотрипсина, но под действием активного химотрипсина. [c.421]

    Химотрипсин-ЭТО протеолитический фермент, секретируемый из поджелудочной железы в тонкий кишечник в виде неактивного предшественника, или зимогена, называемого химотрипсиногеном. Химотрипсиноген, представляющий собой полипептидную цепь из 245 аминокислотных остатков и содержащий пять дисульфидных связей, образованных пятью остатками цистина, активируется в тонком кишечнике под действием другого протеолитического фермента-трипсина. Трипсин гидролизует четыре пептидные связи и удаляет из молекулы химотрипсршогена два дипептида в положениях 14-15 и 147-148. В результате образуется активный химотрипсин, состоящий из трех полипептидных цепей, ковалентно связанных двумя дисульфидными мостиками, один из которых соединяет А- и В-цепи, а второй-В- и С-цепи, как показано на рис. 2. Для проявления активности химотрипсина необходимы остаток гистидина 57 и остаток аспа- [c.251]

    Поскольку ДФФ не является полным структурным аналогом нормальных субстратов этих ферментов, опасность присоединения метки не к активному центру, а к каким-то другим участкам молекулы фермента в этом случае, естественно, больше, нежели в случаях описанных выше. Однако скорость, стехиометрия и специфичность реакции присоединения ДФФ явно указывают, что метка действительно попадает в активный центр. Известно, например, что ДФФ специфически фосфорилирует один из двух остатков серина в химотрипсине. Химотрипсин может быть помечен и многими другими аналогичными агентами, в том числе и-нитрофенилацетатом, причем в каждом случае аципируется одна и та же гидроксильная группа серина, тогда как никакие другие группы не ацилируются. Во многих (хотя и не во всех) исследованных эстеразах и протеиназах ДФФ фосфорилирует гидроксильную группу только того серина, с К-концом которого связан либо аланин, либо глицин. Данные, характеризующие окружение реакционноспособного серина в некоторых белках, приведены в табл. 29. Из таблицы видно, что даже ферменты, сильно различающиеся по своей специфичности, могут иметь одинаковую последовательность аминокислот в участках, примыкающих к остатку серина, содержащему реакционноспособную гидроксильную группу. Это позволяет думать, что специфичность фермента и его способность ката- [c.198]

    Получены экспериментальные доказательства того, что гистидин входит в состав активного центра химотрипсина. При обработке фермента Ъ-1-тозиламидо-2-фенилэтилхлор-метилкетоном (ТФХК) один из двух остатков гистидина в молекуле химотрипсина алкилируется, что сопровождается полной утратой ферментативной активности. Если фермент предварительно инкубировать с ДФФ, то алкилирования не происходит. Алкилирование не идет также в растворе 8 М мочевины. Следовательно, необходимым условием для алкилирования химотрипсина является сохранение вторичной и третичной структуры и нормальных каталитических свойств [31]. В полипептидной цепи фермента этот остаток гистидина расположен далеко от активного серина и должен поэтому приблизиться к активному серину за счет изгиба пептидной цепи. Можно предполагать, что за счет изгибания пептидной цепи с активным серином сближается также та часть молекулы фермента, которая определяет его специфичность. Таким образом, представление об активном центре фермента отличается достаточной сложностью. [c.108]

    Химотрипсин представляет собой второй протеолитический фермент поджелудочной железы. Он обладает также и способностью створаживать молоко. Свежая поджелудочная железа содержит химотрипсиноген, который был выделен в кристаллическом виде [78]. Химотрипсиноген превращается в активный фермент — химотрипсин — под действием небольших количеств трипсина 1 мг трипсина способен активировать 3 г химотрипсиногена, причем активность последнего возрастает при этом примерно в 1 ООО раз. Превращение химотрипсиногена в химотрипсин является, повидимому, очень сложным процессом, при котором образуются несколько промежуточных продуктов. Так, например, установлено, что химотрипсиноген переходит сначала в Tt-химотрипсин, затем в 8-химотрипсин. В конечном итоге из химотрипсиногена получается смесь химотрипсинов, обозначаемых буквами а, р и Y [79, 80]. Сущность процесса активации заключается, повидимому, в освобождении 4— 6 аминогрупп в каждой молекуле химотрипсиногена [82]. В результате стояния водного раствора а-химотрипсина при pH 7,6 происходит необратимое превращение его в и у-химотрипсины, которые отличаются от а-химотрипсина по форме кристаллов и по растворимости [80]. Y-Химотрипсин является димером а-химотрипсина [81]. Химотрипсин расщепляет пептидные связи, образованные карбоксильной группой тирозгша, фенилаланина, триптофана или метионина [20, 83], а также эфиры тирозина [84]. [c.293]

    В недавно появившейся статье сообщается, что из химотрипсина, при обработке его ДФФ (меченным Р32), выделена-радиоактивная серинфос-форная кислота. Авторы статьи приходят к выводу о том, что конечной (но необязательно непосредственно принимающей участие в реакции) точкой присоединения ДФФ к химотрипсину является гидроксильная группа одного иа сериновых остатков этого фермента [141в]. [c.323]

    Ряд экспериментальных данных приводит к заключению, что группой, активирующей гидроксильную группу серина, является имидазольная группа гистидина. Участие имидазольной группы гистидина в ферментативном процессе было доказано избирательным фотоокислением одного из двух остатков гистидина а-химотрипсина в присутствии метиленового синего. Скорость фотоокисления гистидина и скорость инактивации фермента были приблизительно одинаковы, и потеря 50% ферментативной активности совпадала по времени с разрушением 0,48 моль гистидина на 1 молъ а-химотрипсина. Фотоокисление фермента, а также взаимодействие одного из гистидиновых остатков с динитрофторбензолом приводит к потере способности а-химотрипсина реагировать с диизопропилфторфосфатом. [c.212]

    Теперь, следуя схеме Шульца и Ширмера (рис. II.4), опишем образование нативной конформации фермента, а затем сопоставим предполагаемый ступенчатый процесс ее образования с приведенными выше опытными фактами. Конечно, речь не идет о строгом доказательстве соответствия гипотетического представления реальной картине. Вопрос заключается только в выяснении возможности описания спонтанного процесса свертывания белковой цепи в нативную конформацию через регулярные структуры разных степеней сложности. На рис. II. 8 изображены уровни структурной организации а-химотрипсина, отвечающие схеме Шульца и Ширмера. Сначала на локальных участках неструктурированной белковой цепи образуются короткие регулярные -тяжи и а-спирали, которые, как считают, энергетически более предпочтительны по сравнению с любыми другими структурами и поэтому возникают прежде всего. После возникновения единичных вторичных структур создаются -складчатые листы и супервторичные структуры. Их возникновение объясняется энергетической предпочтительностью или предпочтительностью в отношении кинетики процесса свертывания белка. Далее, между -структурами а-химотрипсина осуществляются [c.312]

    Исследоваьшя комплексов химотрипсина с различными ингибиторами методами ЯМР С3115-31181 в целом подтверждают характер взаимодействий, наблюдающихся для кристаллов фермента. Следует отметить, что кристаллы химотрипсина и протеазы А были получены при рН 4, т.е. в таких условиях, когда ферменты теряют активность. Однако в случае протеазы А кристаллы все же гидролизуют пептидный субстрат [3063З, а кристаллы химотрипсина, полученные при более высоких значениях pH [1222,31193, не имеют существенных отличий от кристаллов "кислой формы". [c.292]

    Одним из наиболее исследованных семейств ферментов являются сери-нопротеазы. Все они предназначены для расщепления полипептидньгх цепей белков по механизму, в котором участвует боковая цепь аминокислоты серина (— Hj—ОН), находящейся в активном центре фермента. Три такие протеазы (трипсин, эластаза и химотрипсин) синтезируются в поджелудочной железе и вьщеляются ею в кишечник, где они превращают содержащиеся в пище белки в аминокислоты, способные всасываться через стенки кишечника. Благодаря возможности легко изолировать эти ферменты и их сравнительно высокой устойчивости их удалось интенсивно исследовать химическими способами еще до того, как стало возможным проведение рентгеноструктурного анализа белков. В настоящее время биохимический и рентгеноструктурный анализы позволили установить достаточно ясную картину функции этих ферментов, иллюстрирующую два аспекта действия любых ферментов каталитический механизм и специфичность к субстрату. [c.318]

    Реакцией, которую катализуют трипсин, химотрипсин и эластаза, является гидролиз или разрыв пептидной связи белка  [c.318]

    До сих пор ничего не говорилось о специфичности ферментов. Если трипсин, химотрипсин и эластаза обладают идентичным каталитическим механизмом, то чем они отличаются друг от друга Ответ заключается в том, что они селективны к характеру боковой цепи, следующей за той, в которой они разрывают пептидную связь. В уравнениях (21-1)-(21-3) соответствующие радикалы обозначены К и находятся непосредственно перед карбонильной группой связи, подлежащей разрыву. Каждый из трех рассматриваемых ферментов имеет на своей поверхности карман специфичности , в который входит указанный радикал при связывании субстрата. Этот карман специфичности в трипсине длинный и глубокий, с отрицательным зарядом на дне от ионизованной аспарагиновой кислоты (рис. 21-19, а). Благодаря этому трипсин благоприятствует разрыву белковой пептидной цепи по связи, следующей за положительно заряженными радикалами лизина или аргинина. В химотри тсине карман специфичности шире (рис. 21-19, б) и образован исключительно гидрофобными радикалами, поэтому химотрипсин благоприятствует разрыву пептидной связи, следующей за объемистым ароматическим радикалом, как, например, [c.322]

    Трипсин, химотрипсин и эластаза-три родственных фермента, обладающих одинаковым каталитическим механизмом, но имеющих различную избирательность к субстрату. Они воздействуют на белковую цепь субстрата, образуя ацильный промежуточный продукт между сериновым радикалом фермента и фрагментом цепи субстрата, а затем отщепляют этот фрагмент цепи с молекулой воды. Избирательность этих ферментов определяется наличием на их поверхности по соседству с активным центром кармана , в который вставляется один из радикалов субстрата, подходящий по размеру. [c.339]

    Каким образом трипсин, химотрипсин и эластаза различают свои собственные субстраты  [c.343]

    Ер качестве конкретной системы можно исследовать комплекс а-химотрипсина с профлавином, который является ингибитором фермента. При уменьшении pH среды снижается связывание фер- [eнтa в комплекс за счет конкурентной реакции с протонами  [c.197]

    При рН-скачке иод действием имлульса света наблюдается уменьшение поглощения комплекса, которое протекает с константой скорости Константа = л-моль с , й 1=10 с К Концентрация а-химотрипсина и профлавина моль/л. Концентрация о-нитробензальдегнда 10 3 моль/л. Измерение поглощения комплекса проводят при 465 нм. Свободный профлавип имеет максимум поглощения 455 нм. [c.198]

    Таким образом, различная доступность связей - ONH- гидролитическому распаду определяется преимущественно особенностями первичной структуры макромолекулы. Это явление позволяет решать задачи выбора специфических деструктирую-щих реагентов, способных селективно разрывать пептидные связи между определенными аминокислотными звеньями. Наиболее подходящими в этом отношении являются гидролитические ферменты. Например, фермент трипсин разрывает связь ONH- практически исключительно между Arg и Lys. Другой фермент, химотрипсин, разрывает пептидные связи преимущественно между звеньями, имеющими ароматические ядра (например, между Туг и Phe). [c.360]

    Помимо эффекта сближения и эффекта ориентации следует учитывать также третий фактор — стерическое сжатие. Тем не менее эти факторы не объясняют повыщення констант скорости реакций ио крайней мере еще в 10 —10 раз. Среди возможных объяснений следует упомянуть электростатическую стабилизацию переходного состояния и снятие напряжения в основном состоянии. Следует учесть и такой фактор, указанный Бендером, как замораживание субстратной специфичности . Примером этого служит ароматическая полость в, а-химотрипсине (см. ниже), создающая благоприятную стерическую ситуацию для боковой цепи аминокислоты субстрата. [c.215]


Смотреть страницы где упоминается термин Химотрипсин Химотрипсин: [c.492]    [c.422]    [c.23]    [c.627]    [c.246]    [c.427]    [c.158]    [c.76]    [c.84]    [c.183]    [c.183]    [c.565]    [c.219]    [c.219]    [c.222]    [c.224]   
Аффинная хроматография (1980) -- [ c.56 , c.319 ]




ПОИСК





Смотрите так же термины и статьи:

Химотрипсин



© 2025 chem21.info Реклама на сайте