Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты действие на белки

    Иногда такая классификация не является достаточно четкой, например, для широкого класса биологических реакций при участии ферментов. Ферменты действуют как катализаторы при получении белков и сами представляют собой вещества белковой природы коллоидального размера (10—100 ммк). Следовательно, растворы, содержащие ферменты, занимают промежуточное положение между гомогенными и гетерогенными системами. Хотя такие системы называют иногда микрогетерогенными, мы не выделяем их в отдельный класс, поскольку при рассмотрении их кинетики они трактуются, в зависимости от обстоятельств, либо как гомогенные, либо как гетерогенные. [c.22]


    Ранее уже указывалось, что ферменты — это белки, выполняющие роль катализаторов в биологических реакциях. Необходимость таких катализаторов станет очевидной, если вспомнить, что температура тела равна 37°С, а многие органические реакции протекают только при более высоких температурах. Интересно было бы понять, каким образом ферменты осуществляют свои каталитические функции. Установление точного механизма действия ферментов составляет фундаментальную проблему биоорганической химии. Большая часть превращений происходит на поверхности белкового катализатора на участке, обозначаемом как активный центр, где химические превращения следуют основным закономерностям органической и физической химии. При этом одновременно действуют несколько факторов, которые следует ограничить и исследовать отдельно с помощью специальных моделей. Однако, чтобы оценить каталитическое превращение реагента (субстрата) в продукт реакции, необходимо общее представление о таком явлении, как катализ. Субстратом обычно называют химическое вещество, превращение которого катализирует фермент. [c.189]

    Активными катализаторами биологического действия являются ферменты — некоторые белки с большой молекулярной массой. Так, например, при комнатной температуре половина от имеющегося количества мочевины разлагается водой за 3200 лет, а в присутствии фермента уреазы время ее полупревращения при той же температуре составляет 10 с. [c.137]

    Ферменты — это белки с большим молекулярным весом (порядка 500 000) обладают крайне дифференцированным каталитическим действием, которое определяется так называемыми активными центрами. Ферменты — высокоэффективные катализаторы так, например, времена полупревращения для реакции разложения мочевины водой равны соответственно 10 с при 25°С и 10 с при 25°С, но в присутствии фермента уреазы. [c.152]

    В последующих разделах на примере ферментов обсуждаются известные нам механизмы действия белков. В конце главы мы рассмотрим деятельность одного из органов — скелетной мышцы на уровне действия и функции белков. [c.273]

    Весь сложный процесс переваривания пищевых белков в пищеварительном тракте настроен таким образом, чтобы путем последовательного действия протеолитических ферментов лишить белки пищи видовой и тканевой специфичности и придать продуктам распада способность всасываться в кровь через стенку кишечника. Примерно 95—97% белков пищи всасывается в виде свободных аминокислот. Следовательно, ферментный аппарат пищеварительного тракта осуществляет поэтапное, строго избирательное расщепление пептидных связей белковой молекулы вплоть до конечных продуктов гидролиза белков —свободных аминокислот. Гидролиз заключается в разрыве пептидных связей —СО—МН— белковой молекулы. [c.418]


    Различают ферменты - простые белки, которые при гидролизе дают только аминокислоты. Ферменты-протеины используются в качестве лекарственных и диагностических средств (пепсин, трипсин, папаин, уреаза). Сложные ферменты, как правило, имеют простетическую группу (кофермент) небелковой природы, связанную с белком фермента связью различной степени прочности. Роль коферментов в общем механизме биокатализа настолько важна, что их можно рассматривать как отдельную группу биологически активных веществ с разными механизмами действия. [c.204]

    Для исследования локализации интегральных белков в мембране используются различные методы [И]. Среди них наиболее предпочтительными благодаря своей селективности являются ферментативные. С помощью протеаз, например, если действовать ими сначала на наружную, а затем на внутреннюю поверхности мембраны, можно определить, различна ли структура и функция белка на разных сторонах бислоя. Было показано, в частности, что при перфузии аксона проназой, мишенью действия фермента оказались белки, участвующие в инактивации натриевого канала, и, следовательно, они должны быть размещены на внутренней стороне мембраны. Если же проназой действовали извне, то на инактивацию натриевого канала она почти не влияла (гл. 6). [c.77]

    Действие ферментов специфично. В настоящее время специфичность большинства ферментов понимают более широко, т. е. считают, что одни ферменты действуют на определенную группу близких друг к другу химических веществ, но не действуют на другую, они ускоряют реакции только одного типа. Например, ферменты, расщепляющие белки, не оказывают влияния на углеводы. Некоторые ферменты специфично действуют на определенное химическое соединение (ферменты-индивидуумы). Они специфично относятся и к стереохимической конфигу- [c.518]

    Термолабильность ферментов т. е. инактивация их, связанная с разрывом полипептидных связей при повышении температуры,— денатурация белков, приводит к появлению оптимума температурного действия. С ростом температуры увеличивается скорость ферментативной реакции, но увеличивается и инактивация фермента. Поскольку белки являются амфотер-ными электролитами, для ферментов характерен также оптимум pH. Так, например, оптимум действия пепсина лежит в зоне pH = 1,5 —2,5, трипсина —8—11, сахаразы, выделенной из. дрожжей, — 4,6—5,0, сахаразы из кишечника — 6,2, амилазы из слюны или поджелудочной железы — 6,7—6,8 и т. д. Некоторые ферменты могут иметь различную величину оптимума pH для разных субстратов. Так, оптимум pH пепсина несколько меняется для разных белковых субстратов, тогда как карбогидразы [c.249]

    Известно, что скорость ферментативной реакции может быть сравнительно легко изменена при изменении условий реакции. Наиболее часто встречаются случаи, когда скорость реакции изменяется вследствие влияния некоторых веществ на структуру и реакционноспособность (каталитическую активность) ферментов. Вещества, уменьшающие активность ферментов, называются ингибиторами ферментов. Вообще говоря, активность ферментов, являющихся белками, может быть уменьшена при различных воздействиях, вызывающих необратимую денатурацию белков (нагревание, действие сильных кислот и оснований и т. п.). Однако такое неспецифическое ингибирование ферментов не представляет большого интереса для изучения механизма ферментативных реакций. Наоборот, изучение действия веществ, не вызывающих денатурации белка в обычном смысле слова, но способных лишать ферменты их каталитических свойств благодаря специфическому взаимодействию с определенными функциональными группами, имеет большое значение для изучения химического строения активных центров и механизма ферментативных реакций. [c.78]

    Какие железы пищеварительного тракта выделяют ферменты, действующие на белки  [c.214]

    Во втором классе (трансферазы) ферменты, действующие на полимерные субстраты, представлены в основном группой метил-трансфераз (КФ 2.1.1), переносящих метильную группу на полисахариды, нуклеиновые кислоты и белки ацилтрансфераз (КФ 2.3.1), которые переносят ацильные остатки на ряд белков гликозилтрансфераз (КФ 2.4), куда входят несколько десятков ферментов, переносящих остатки гексоз, пентоз и других глико-зильных групп от полисахаридов на подходящие акцепторы и, наоборот, от подходящих доноров на полисахариды или белки. [c.7]

    В природе железо находится в связанном виде входит в состав горных пород, природных вод и вод некоторых минеральных источников, содержится в живых организмах. Р астения при недостатке железа не образуют хлорофилла н теряют возможность ассимилировать СО2 из воздуха. У животных и человека железо - действующее начало гемо-глобрша - переносчика кислорода от органов дыхания к тканям соединениями железа являются многие ферменты и белки. В организме взрослого человека содержится 4-5 г железа. [c.191]


    Белки являются основной составной частью мягкой структурной ткани животных и имеют большое значение в биологии. Белки, называемые ферментами, действуют как катализаторы клеточных реакций известно немало полипептидных гормонов. Метаболическая активность клетки контролируется нуклеопро-теинами белки, растворенные в крови, отвечают за транспорт кислорода (гемоглобин) и иммунный ответ. Белки выполняют также многие другие функции. [c.296]

    По сравнению с неорганическими катализаторами ферменты обладают значительно большей специфичностью действия. Некоторые ферменты катализируют превращение практически только одного какого-либо вещества. Например, фермент глюкозооксида-за, получаемый из плесневых грибов различных видов, специфически окисляет -D-глюкозу до глюконовой кислоты и почти не действует на другие моносахариды. Многие ферменты действуют только на определенный вид химической связи. Например, фермент пепсин гидролизует пептидные связи в молекулах белка, образованные только ароматическими аминокислотами. Наименьшую специфичность обнаруживают ферменты, которые катализируют опреде- ленные группы реакций. Так, например, ферменты, [c.111]

    Огромные успехи исследований механизмов кодирования наследственной информации и биосинтеза белка, ферментативного катализа и регулирования активности ферментов, действия антибиотиков и гормонов, всей той области изучения живого, которую принято называть молекулярной биологией, приучили всех к мысли о том, что в структурах молекул жизни положение буквально каждого атома строго обусловлено и подчинено выполнению предназначенных для этих молекул биологических функций. Именно в атом смысле принято обычно говорить о специфичности биополимеров, прочно ассоциировавшейся в сознании исследователей с однозначным соответствием между структурой и выполняемой функцией. При таком комплексе стр>т<турного детерминизма трудно было освоиться с представлением о специфичности полисахаридов, для многих из которых характерна статистичность структур, микрогетерогенность и, нередко, хаотичность распределения различных моносахаридных остатков по цепи. И, тем не менее, накапливающийся материал по сложному и высоко специализированному функционированию углевод ных полимеров в живых системах убеждает в том, что и в этой области возможен и необходим перевод функций- нальных свойств биополимеров на язык молекулярных структур, т. е. применим основной принцип молекулярной) [c.162]

    Под действием иротеолитических ферментов (иротеиназ) белки расщепляются на строго определенные фрагменты, называемые пептидами, с концевыми аминокислотами, соответствующими избирательности действия иротеиназ. Структура некоторых таких фрагментов неполного гидролиза доказана последующим химическим их синтезом. [c.51]

    Ферменты являются белками, поэтому любые агенты, вызывающие денатурацию белка (кислоты, щелочи, соли тяжелых металлов, нагревание), приводят к необратимой инактивации фермента. Однако подобное инак-тивирование относительно неспецифично, оно не связано с механизмом действия ферментов. Гораздо большую группу составляют так называемые специфические ингибиторы, которые оказывают свое действие на какой-либо один фермент или группу родственных ферментов, вызывая обратимое или необратимое ингибирование. Исследование этих ингибиторов имеет важное значение. Во-первых, ингибиторы могут дать ценную информацию о химической природе активного центра фермента, а также о составе его функциональных групп и природе химических связей, обеспечивающих образование фермент-субстратного комплекса. Известны вещества, включая лекарственные препараты, специфически связывающие ту или иную функциональную группу в молекуле фермента, выключая ее из химической реакции. Так, йодацетат I H,—СООН, его амид и этиловый эфир, пара-хлормеркурибензоат lHg—С Н,—СООН и другие реагенты сравнительно легко вступают в химическую связь с некоторыми SH-группами ферментов. Если такие группы имеют существенное значение для акта катализа, то добавление подобных ингибиторов приводит к полной потере активности фермента  [c.147]

    Помимо структуроподобных аналогов витаминов, введение которых обусловливает развитие истинных авитаминозов, различают антивитамины биологического происхождения, в том числе ферменты и белки, вызывающие расщепление или связывание молекул витаминов, лишая их физиологического действия. К ним относятся, например, тиаминазы [c.247]

    Наиболее изученным является аденилатциклазный путь передачи гормонального сигнала. В нем задействовано мимимум пять хорошо изученных белков 1) рецептор гормона 2) фермент аденилатциклаза, выполняющая функцию синтеза циклического АМФ (цАМФ) 3) G-белок, осуществляющий связь между аденилатциклазой и рецептором 4) цАМФ-зависимая протеинкиназа, катализирующая фосфорилирование внутриклеточных ферментов или белков-мишеней, соответственно изменяя их активность 5) фосфодиэстераза, которая вызывает распад цАМФ и тем самым прекращает (обрывает) действие сигнала (рис. 8.5). [c.290]

    Для удаления пятен белкового происхождения (кровь, молоко и т. д.) в состав моющих средств можно вводить ферменты, расщепляющие белки (протенназы), которые, однако, действуют лишь при невысоких температурах (примерно до 60 °С). [c.732]

    Фермжты. Некоторые биологи считают, что в нашем организме одновременно функционируют до нескольких сотен тысяч или даже миллионы индивидуальных ферментов. Без этого количества ферментов жизненные отправления животного или растительного организма были бы вообще невозможны. По своей химической природе ферменты являются белками, наделенными каталитической активностью. Особенностью ферментов как катализаторов является резко выраженная специфичность их действия и высокая активность, во много раз превышающая активность неорганических катализаторов. [c.143]

    Иногда к Л. относят также ферменты, действующие аналогично Л., но без участия нуклеозидтрифосфата. Л. играют большую роль в биосинтезе белков, жиров и углеводов. ЛИГАНДООБМЕННАЯ ХРОМАТОГРАФИЯ, основана на разл. способности разделяемых соед. образовывать комплексы с катионами металлов и фиксиров. группами (в т. ч. ионогенаыми) неподвижной фазы. Такие ко>тлексы наз. сорбционными. В зависимости от того, локализованы комплексообразующие катионы в неподвижной фазе или перемещаются вместе с разделяемыми в-вами в подвижной фазе, различают хроматографию лигандов и Л. х. комплексов. [c.300]

    Если при обсуждении каталитических процессов до сих пор не умолкают споры о химизме и механизме катализа и если эти споры привлекают внимание, как и раньше, химиков разнообразного направления (Берцелиус, Оствальд, Аррениус, Сабатье, Зелинский, Баландин, Кобозев и многие другие), то это объясняется сложностью и многообразием каталитических реакций. О природе и химизме действия биологических катализаторов — ферментов — в течение прошлого столетия существовала гипотеза, исключавшая структурную связь фермента с белком, и считалось, что для усиления их действия можно и нужно очистить фермент, освободив его от белка. Однако в результате многочисленных экспериментов было показано, что при полной очистке от белка фермент терял свою активность. Понемногу составлялось убеждение в том, что белок необходим для ферментативного действия. Наиболее уверенную гипотезу в этом направлении высказал в двадцатых годах текущего столетия Вильштетер [2, 3], который полностью обосновал представление о том, что активное вещество фермента должно быть связано с белком и только в этом случае будут осуществляться каталитические и ферментные реакции. [c.439]

    Основные научные работы посвящены изучению ферментов обмена белков и нуклеиновых кислот, энзимологии генетических процессов, цитохимии. Одним из первых доказал существование регуляции синтеза белков на уровне генов. Доказал, что наряду с известным реирессорным механизмом в клетках действует и позитивный механизм регуляции транскринции, основанный на способности белков (в частности, РНК-полимеразы) узнавать определенные нуклео- [c.539]

    В состав всех ферментов входят белки. Некоторые ферменты,, кроме белка, имеют в своем составе небелковую часть, называемую простетической. Под действием, высокой температуры происходит денатурация белка ферментов, и они теряют свойства катализаторов. Как и все катализаторы, ферменты не расходуются при реакциях и поэтому нужны в очень малых количествах. [c.121]

    Знание этих явлений основывается на знаменитом опыте (А. Харден и В. Ж. Юнг, 1904 г.), в котором полученный описанным выше способом сок пивных дрожжей отфильтровывали через фильтр из желатины и разделяли на фильтрат и остаточную жидкость (тождественные результаты получают диализом через мембрану). Каждая жидкость, взятая в отдельности, не производит брожение сахара, но при их смешивании они вновь приобретают свою первоначальную активность. Фильтрат можно кипятить без потери активности остаточная жидкость не выносит кипячения. Отсюда был сделан вывод, что фильтрат содержит диализующееся термостабильное вещество с небольшими молекулами, а остаточная жидкость представляет собой макромолекулярное вещество, чувствительное к действию тепла. В настоящее время известно, что эти макромолекулярные компоненты — собственно ферменты — являются белками и как таковые денатурируются при нагревании. Термостабильные диализующиеся вещества, составляющие активное дополнение ферментов в их каталитических реакциях, были названы коферментами. [c.247]

    В живых организмах мевалоновая кислота образуется из ацетата под действием ферментов (специфических белков) и фермента А (КоА). Первоначально образуется ацетилкофермент А, превращающийся в ацетоацетилкофермент А (том I), а последний превращается в (3-окси-р-метилглутарилкофермент А. Восстановление в мевало-новую кислоту происходит за счет гидрированного трифосфопиридиннуклеотида ТФПН или кодегидразы II (см. там же)] [c.933]

    Однако такие химические реакции можно осуществить в лабораторных условиях при температуре человеческого тела только в присутствии специальных веществ, получаемых из растений или животных. Эти вещества, называемые ферментами, являются белками, обладающими каталитическим действием по отноп1ению к некоторым реакциям. Так, слюна содержит особый белок — фермент, называемый амилазой слюны или птиалином, который катализирует превращение крахмала в сахар — мальтозу С12Н220Ц-Реакцию, которую катализирует амилаза слюны, можно записать следующим образом  [c.491]

    Ферменты проявляют обычно свое каталитическое действие в водных растворах и, следовательно, по этому признаку могут быть отнесены к гомогенным катализаторам. Однако при более тщательном рассмотрении вопроса такое заключение оказывается не вполне точным. Дело в том, что ферменты — это белки с весьма большим молекулярным весом — от десятков до сотен тысяч и, следовательно, при обсуждении свойств многих из них мы вправе говорить о существовании в растворе ферментов поверхности (микроповерхности) раздела, характерной для гетерогенных катализаторов. Более того, каталитическая активность ферментов, как и гетерогенных катализаторов, определяется наличием на их поверхности особых участков ограниченного размера — активных центров, обладающих специфической реакционноспособностью. Многие ферменты, например ферменты переноса электронов в окислительновосстановительных реакциях, ферменты, участвующие в биосинтезе белка, и некоторые другие ферменты функционируют, будучи вмонтированными в сравнительно жесткие структурные компоненты клетки, обладающие макроповерхностью раздела (митохондрии, рибосомы и т. п.). [c.26]

    Поджелудочная железа выделяет свой секрет в двенадцатиперстную кишку в количестве от 0,5 до л з сутки. Сок поджелудочной железы, полученный по методу Павлова, представляет прозрачную жидкость щелочной реакции pH 7,3—8,7. Сок содержит ферменты, действующие на углеводы, амилазу и а-глюкозидазу, на жиры — липазу, на фосфатиды — фосфолипазы, на белки — трипсиноген, химотрипсиноген и панкреатоиептидазу, на полипептиды — карбоксипеп-тидазы и на нуклеиновые кислоты — дезоксирибонуклеазу и [c.190]

    Ферменты-это белки, катализирующие строго определенные химические реакции. Они связываются с молекулой субстрата, в результате чего образуется промежуточный фермент-субстратный комплекс, который затем распадается на свободный фермент и продукт реакции. При повьппении концентрации субстрата 8 и постоянной концентрации фермента Е каталитическая активность последнего будет повьппаться до тех пор, пока не достигнет характерной для данного фермента максимальной скорости imax при которой практически весь фермент находится в форме комплекса Е8 и, следовательно, насьпцен субстратом. Такая зависимость между концентрацией субстрата и скоростью ферментативной реакции описывается гиперболича кой кривой. Концентрация субстрата, при которой скорость реакции составляет половину величины Р пах, получила название константы Михаэлиса-Ментен (Км). Эта константа является характеристикой каталитического действия фермента применительно к какому-то определенному субстрату. Уравнение Михаэлиса-Ментен [c.267]


Смотреть страницы где упоминается термин Ферменты действие на белки: [c.633]    [c.398]    [c.633]    [c.300]    [c.223]    [c.401]    [c.315]    [c.46]    [c.222]    [c.711]    [c.166]    [c.18]    [c.206]    [c.220]    [c.375]   
Белки Том 1 (1956) -- [ c.10 ]




ПОИСК







© 2025 chem21.info Реклама на сайте