Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналитические цинка

    Очень важно, что величины произведений растворимости разных сульфидов различаются чрезвычайно сильно. Это позволяет,, надлежащим образом регулируя величину pH раствора, разделять катионы разных металлов путем осаждения их в виде сульфидов. Так, из качественного анализа известно, что сульфиды IV и V аналитических групп осаждаются сероводородом в кислой среде, так как величины их произведений растворимости очень малы (порядка 10 29 J, менее). Наоборот, осаждение катионов П1 аналитической группы (произведение растворимости порядка 10 —10" ) сероводородом или сульфидом аммония проводят в щелочной среде (при pH около 9). Аналогичные методы нередко применяются и в количественном анализе, например для отделения катионов меди, висмута, олова и других металлов от катионов железа и т. д. Регулируя кислотность раствора при осаждении сульфидов, можно количественно разделять катионы, принадлежащие к одной и той же аналитической группе. Так, в присутствии уксусной кислоты цинк можно количественно отделить от железа, в присутствии 10 н. раствора НС1 — отделить мышьяк от олова и сурьмы и т. д. [c.121]


    Цинк. Первым аналитический участок расположен в красной области спектра. Здесь наблюдается всего одна яркая линия Znl 636,235 нм. [c.100]

    Если кислотность раствора устанавливать более точно, а также использовать некоторые другие условия, можно разделить катионы, входящие в одну и ту же аналитическую группу. Так, например, осаждение сероводородом применяют для отделения цинка от железа. В среде уксусной кислоты или монохлоруксусной кислоты (в присутствии некоторого количества солей этих кислот) сернистый цинк количественно осаждается, а двухвалентное железо остается в растворе. В среде 10 н. соляной кислоты можно отделить мышьяк от олова и сурьмы. При pH, равном 5 или б, никель (в виде сульфида) отделяется от марганца и т. д. В ряде случаев для отделения катионов в виде сульфидов связывают некоторые катионы в комплексные соединения. Соответствующие примеры описаны в 23. [c.93]

    Электрохимические процессы широко используются в современной технике, в аналитической химии, в научных исследованиях. Так, электрохимическим методом в промышленности получают металлы (алюминий, цинк, никель, магний, натрий, литий, бериллий и др.), хлор, гидроксид натрия, водород, кислород, ряд органических соединений, рафинируют металлы (медь, алюминий). Электрохимические методы широко используют для нанесения металлических покрытий, для полирования, фрезерования и сверления металлов. С каждым днем все больше применяются химические источники электрической энергии — гальванические элементы и аккумуляторы — в технике и научных лабораториях. В аналитической практике и научных исследованиях широко применяют такие электрохимические методы исследования, как потенциометрический, полярографический и т. п. Электрохимические системы в виде так называемых хемотронных приборов с успехом применяют в электронике и вычислительной технике. [c.313]

    Приборы и реактивы. Весы аналитические и разновес. Аппарат Киппа с двумя промывными склянками. Эксикатор. Щипцы тигельные. Тугоплавкая изогнутая трубка диаметром 10—8 мм. Штатив Бунзена с лапкой. Оксид меди прокаленный. Цинк гранулированный. Соляная кислота (1 1). Серная кислота (пл. 1,84 г/см ). Перманганат калия (0,1 н, раствор). [c.34]

    Вторая половина семейств переходных металлов — кобальт, никель, медь, цинк, палладий, серебро, кадмий, ртуть — образуют хорошо растворимые комплексные аммиакаты (и цианиды), которые образуют 6-ю аналитическую группу по кислотно-щелочному методу и [c.20]


    При проведении некоторых химико-аналитических исследований возникает необходимость оценить характер и степень зависимости одной экспериментальной величины от другой или нескольких других исследуемых величин. Например, при геохронологических исследованиях, проводимых с целью установления возраста пород и минералов земной коры, появляется необходимость сравнить между собой содержание отдельных изотопов урана, тория и свинца в разных образцах. Медиков и экологов интересует связь между частотой отдельных заболеваний (зобная болезнь, кариес, почечно-каменная болезнь) в тех или иных районах и содержанием некоторых микроэлементов (иод, фтор, цинк) в питьевой воде и почве. С точки зрения математической статистики решение задач подобного рода направлено на установление корреляции между случайными величинами. [c.157]

    В приготовленном растворе аналитически проверяют содержание железа. В случае когда количество соединений железа превышает норму, в раствор добавляют цинковый порошок по 50 г на каждый литр раствора. Цинк восстанавливает соединения железа до металлического железа, которое выпадает в осадок. Очистку проводят при температуре 70—80° С в течение 2—3 ч. Такая обработка позволяет также очистить электролит от большинства растворимых соединений тяжелых металлов. [c.118]

    Для многих аналитических работ гранулированный цинк можно амальгамировать без измельчения. [c.307]

    Хранят в закрытой склянке под водой. Для длительного хранения амальгамированный цинк высущивают на водяной бане, помещают в банку с корковой пробкой и заливают парафином. Для многих аналитических работ гранулированный цинк можно амальгамировать без измельчения. [c.103]

    В кислом растворе (2 н. кислота) тиоацетамид осаждает катионы IV и V аналитических групп мышьяка (III), сурьмы (III), олова (П), ртути (II), меди (П), свинца (II), серебра (I) в щелочной среде осаждаются катионы III группы алюминий (III), железо (111), хром (III), кобальт (П), никель (II), марганец (II) и цинк (11). Применяют его также для разделения катионов. [c.207]

    Оксихинолин отличается от других оксихинолинов пространственным расположением гидроксильной группы по отношению к азоту кольца. В результате такого расположения ионы многих металлов образуют с 8-оксихинолинами нерастворимые клешнеобразные соединения. Такие металлы, как медь, цинк, кадмий, алюминий, висмут, уран, марганец, железо (трехвалентное) и никель, наряду с некоторыми другими, осаждаются в виде клешнеобразных соединений с 8-оксихинолином из его раствора, содержащего уксуснокислый натрий. Вследствие этого 8-оксихинолин является одним из наиболее ценных органических реагентов для определения металлических ионов. Это соединение известно также под названием оксина оно было предложено в качестве аналитического реактива Ханом [449] и Бергом [450]. Имеются хорошие обзоры работ с применением этого реагента [4506, 451]. [c.104]

    Вторичный цинк анализируют по аналогичной методике, только С = 0,005 мкф, Ь — О, ток в первичной цепи 2 а. Аналитическая пара линий Mg 2790,78 — 2п 3075,90 Л. [c.175]

    Эта группа веществ включает соединения так называемых ядовитых металлов, а также мыщьяка и сурьмы. Из элементов V, IV, III и II аналитических групп токсикологическое значение имеют мыщьяк, сурьма, олово, ртуть, висмут, медь, кадмий, свинец, серебро, цинк, хром, марганец, таллий, никель, кобальт и барий. [c.278]

    Абсолютно специфичных реакций в аналитической химии почти не существует, поэтому А. И. Крылова разработала определенные приемы для устранения мешающего влияния посторонних элементов маскирование ионов (например, широко распространенного в органах иона железа) введением комплексообра-зователей, реакции окисления — восстановления (марганец, хром, мышьяк), строгим соблюдением определенных значений pH среды, применением малых объемов минерализата (марганец, хром, мышьяк, цинк), разбавлением минерализата до предела чувствительности реакции во избежание обнаружения естественно содержащихся элементов и использованием правила рядов среди диэтилдитиокарбаминатов и дитизонатов. [c.295]

    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и определяют количество металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием нерастворимого плотного осадка, пригодного для гравиметрического определения. Примером может служить окисление свинца(П) до диоксида свинца. Кроме того, в аналитической химии электролиз можно использовать для разделений ионов известен способ, когда легко восстанавливающиеся ионы металлов осаждаются на ртутном катоде, а трудно восстанавливающиеся катионы остаются в растворе. Таким способом алюминий, ванадий, титан, вольфрам, щелочные и щелочноземельные металлы можно отделить от железа, серебра, меди, кадмия, кобальта и никеля, которые выделяются на ртути. [c.413]

    Подробный обзор о лабораторной перегонке иод вакуумом металлов и сплавов, не содержащих железа, приведен в работе Шпендлеве [116]. Хорслей [117] описал аппаратуру для разгонки щелочных металлов. В соответствии с этими работами металл расплавляют в вакууме, фильтруют и затем перегоняют преимущественно ири давлении до 10" мм рт. ст. Пары металла конденсируют в конденсаторе, охлаждаемом циркулирующим маслом. Для получения чистого тантала Паркер и Вильсон [118] использовали хлорид тантала ТаС ., (температура кипения 240° С при 760 мм рт. ст.). Безобразов с сотр. [118а] разработал кварцевый аппарат диаметром 40 мм и высотой разделяющей части 1250 мм для аналитической перегонки высококипящих веществ с температурой кипения до 1000°С (сера, селен, теллур, цинк, кадмий, сульфид мышьяка и др.). [c.260]


    Так как разница потенциалов разложения Zn la и u la достаточно велика, то цинк и медь можно разделить электролизом. Электрохимическое разделение металлов лежит в основе одного из методов аналитической химии — электроанализа. Задавая напряжение чуть выше 1,02 в, на катоде вьщеляют медь. Затем поднимают напряжение чуть выше 2,12 в и осаждают цинк. [c.213]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Аналитические реакции сульфит-иона SOj". Сульфит-ион SO3 и гидросульфит-ион HSO3 — анионы двухосновной нестабильной в водных растворах сернистой кислоты H2SO3, которая при ионизации по первой стадии является кислотой средней силы (pATj = 1,85), а по второй — очень слабой (р 2 = 7,20). В водных растворах сульфит-ионы бесцветны, подвергаются гидролизу, являются сильными восстановителями (уже в водных растворах они медленно окисляются кислородом воздуха до сульфатов). Однако некоторые сильные восстановители, например, металлический цинк в кислой среде, могут восстанавливать сульфиты до сероводорода H2S. Сульфит-ион обладает довольно эффективными комплексообразующими свойствами как лиганд. [c.425]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Na" -HOHH можно открыть в присутствии остальных катионов I аналитической группы при помощи ацетата уранила и, еще лучше, при помощи ацетата цинк-уранила. [c.119]

    Медь, свинец, цинк и олово. Оксиды меди-получение меди-электролитическое получение меди-применецие меди-соли меди-аНалитическая реакция. Свинец-свойства и соединения-аналитическая реакция Цинк-свойства и соединения-олово [c.470]

    Чистый цинк очень медленно растворяется в кислотах. Чтобы обеспечить достаточную для аналитических целей скорость растворения, препарат подвергают термической обработке. Для этого гранулированный цинк помещают тонким слоем в муфельную печь, нагретую до 400 °С, выдерживают 3—4 ч при этой температуре и затем возможно медленнее охлащдают. Цинк становится несколько тусклым, но приобретает способность быстро реагировать с кислотами. [c.397]

    Хлористое олово в растворе соляной кислоты является мало применимым в технике, по дороговизне своей, восстановителем и может быть употребляемо только при условии регенерации олова для получения особенно дорогих препаратов (при восстановлении азокрасителей) или, так же как и цинк, в кислой среде в аналитической лабораторной практике. [c.131]

    Если же pH 7, то концентрация -ионов велика и осаждаютс сульфиды с довольно большими значениями произведения ра< творимости. К ним относятся сульфиды III аналитической группь в которой наименее растворимым является сульфид цинк (ПР=1,2-10-23) [c.170]

    Грибы как аналитические индикаторы шщюко используют цри анализе почв на содержание таких элементов, как цинк, медь, марганец, железо, молибден, фосфор, углерод, азот, сера. [c.401]

    Весовую форму взвешивают и пересчитывают на содержание цкнка в сплаве. Очень часто в латунн цинк не определяют аналитически, а содержание его вычисляют по разности. [c.305]

    Каплю солянокислого раствора испытуемого вещества вы париБзют в пробирке досуха и остаток смешивают с 3,6-дихлор флуораном, взятым на кончике шпателя, и двойным количеством хлористого цинка. Пробирку нагревают на воздушной бане (большой железный тигель или алюминиевый блок) при 250—260° дк тех пор, пока не сплавится весь хлористый цинк. После охлажде ния пробирки плав растворяют в спиртовом растворе хлористоп водорода. В присутствии первичных алифатических аминов рас твор имеет желто-зеленую флуоресценцию. В случае малых количеств амина для обнаружения флуоресценции пользуются светом аналитической кварцевой лампы. [c.65]

    Как сообш,алось выше, можно получать воду с электропроводностью 0,07 - 10 ом- см, однако даже в этом случае нужно принять некоторые меры, чтобы эта вода была пригодна для аналитических целей. Однажды автор пользовался водой, полученной с помощью смешанного ионообменного фильтра и имевшей указанную электропроводность, к которой было прибавлено известное микроколичество цинка затем этот раствор после добавки подходящей щелочи был подвергнут полярографическому анализу. К нашему удивлению, ожидаемой волны на полярограмме при соответствующем значении потенциала полуволны не было обнаружено. После многих экспериментов мы нашли, что ничтожные следы органического вещества, присутствующего в воде, образовали комплексное соединение с цинком, в результате чего потенциал полуволны был сдвинут. Если бы мы не знали точно, что цинк присутствует, мы бы, конечно, не обнаружили его полуволну. [c.62]

    Во многих случаях для качественной характеристики вещества можно ограничиться только визуальным наблюдением флуоресценции. Так, например, некоторые алколоиды флуоресцируют характерным светом кокаин — светло-синим, кодеин — слабо-желтым, наркотин— темно-фиолетовым и т. д. По характеру окраски флуоресценции медицинского препарата можно определить присутствующий в нем алкалоид. Соли бериллия в щелочной среде в присутствии морина дают яркую флуоресценцию желто-зеленого цвета. Этой реакции не мешают магний, кальций, цинк, мешающие определению бериллия при обычных аналитических работах. Задача качественного анализа становится значительно более сложной, когда смесь состоит из нескольких флуоресцирующих веществ, в этом случае применяются светофильтры или сочетание люминесцентного анализа с хроматографическим. Наиболее избирательные методы анализа построены на спектральном разложении света флуоресценцией и изучении спектральных характеристик флуоресценции спектрографическим методом. [c.156]

    Аналитическое разделение хроматографическим методом таких элементов, как кобальт, медь, железо, цинк, висмут, свинец и молибден, входящих в жаропрочные и другие сложные по химическому составу сплавы, основано на способности образования этими элементами в концентрированных солянокислых растворах отрицательных комплексных соединений следующего вида , (РеС] ) (СиС - (МпС18)2" 2п(С1з) (РЬС1в) " и т. п. Все эти комплексы имеют различную степень устойчивости в зависимости от кислотности раствора. [c.335]


Смотреть страницы где упоминается термин Аналитические цинка: [c.20]    [c.199]    [c.193]    [c.616]    [c.55]    [c.154]    [c.80]    [c.114]    [c.421]    [c.66]    [c.146]    [c.202]    [c.224]    [c.495]    [c.559]    [c.68]    [c.23]   
Аналитическая химия. Т.1 (2001) -- [ c.372 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитические реакции катионов третьей группы (ионы алюминия, хрома, железа, марганца и цинка)

Максимов, А. Н. Рудневский. Исследование и аналитическое применение эффекта усиления интенсивности линий некоторых элементов в разряде с полым катодом при введении в плазму паров кадмия п цинка

Третья аналитическая группа катионов (ионы алюминия, хрома, железа, марганца и цинка)

Третья аналитическая группа катионов. Алюминий, хром, железо, марганец, цинк, ванадий, церий, никель, кобальт, бериллий, титан, цирконий, торий, уран



© 2025 chem21.info Реклама на сайте