Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро атомный вес

    Этот метод был разработан Штерном на основе использования стробоскопического эффекта. С разогретой до высокой температуры посеребренной проволоки А в высоком вакууме испаряются атомы серебра. Атомные лучи> проходят через щели В1 и и осаждаются на латунном барабане С. Все устройство (щели и латунный барабан) приводятся во вращение вокруг оси — проволоки А (скорость 2000 об/мин). Поэтому траектория атомов серебра относительно всего устройства изгибается, и в зависимости от своей скорости они попадают на различные участки барабана в области СС (аналогично дрейфу на запад или восток воздушных потоков, направляющихся от полюсов Земли к экватору, — пассатов). Получаемый при этом спектр (распределение) скоростей можно измерить Максвелл предложил аналитическую формулу для Д(ми молекул (1М, имеющих скорость в интервале ии + +с1т  [c.19]


    Атомно-абсорбционный метод по этой же причине применяют в не столь массовом масштабе, как он того заслуживает. Метод внедрен в золотодобывающей промышленности для анализа растворов, особенно цианистых. Для концентрирования золота часто проводят предварительную экстракцию развиваются и методы анализа твердых порошковых проб, особенно с графитовой кюветой и другими непламенными атомизаторами. Определение золота атомно-абсорбционным методом стало обычным для этой цели разработан анализатор Золото-1 . Применяется атомная абсорбция и в сочетании с пробирным методом концентрирования золота и серебра. Атомно-абсорбционный метод получил полное признание и в других подотраслях, например в редкометаллической промышленности. [c.149]

    Идея Жерара приписать металлам (за исключением калия, натрия, лития и серебра) атомные веса, вдвое меньшие, чем у Берцелиуса, противоречила экспериментальным фактам, в особенности законам удельных теплоемкостей и изоморфизма. [c.201]

    Так, например, для серебра атомный вес М = 107,88 при 1200° С и [c.464]

    К исследованиям Е. А. Кириллова примыкает серия ценных работ кандидата физико-математических наук А. Н. Латышева, которые посвящены спектральным свойствам напылений серебра. Полученные им результаты не только подтвердили выводы] Е. А. Кириллова, но и показали важные особенности поведения частиц серебра атомно-молекулярной дисперсности [c.5]

    Платина — серебристо-серый металл с уд. весом 21,4 и температурой плавления 1773,5° С. Теплопроводность и электропроводность платины Pt в раз ниже, чем серебра. Атомный вес ее 195,23, в соединениях главным образом четырехвалентна. Нерастворима в кислотах, но растворяется в царской водке. Электрохимический эквивалент Pt 1,821 г а-ч. [c.76]

    Иридий — оловянно-белый металл с уд. весом 22,4 и температурой плавления 2440° С. Теплопроводность иридия в 5 раз ниже, а электропроводность в 3,3 раза ниже, чем у серебра. Атомный вес его 193,1. Химически наиболее устойчивы четырехвалентные и трехвалентные соединения иридия. Электрохимический эквивалент 1г + [c.98]

    Как будет показано позже, при рассмотрении титрования с внешними индикаторами ошибку, связанную с отбором проб, можно сделать исчезающе малой. Метод равного помутнения, предложенный в 1832 г. Гей-Люссаком, явился одним из первых методов титриметрического анализа. Впоследствии он был нспользован для весьма точного определения атомных весов галогенов и серебра. [c.320]

    Законы Фарадея схематически иллюстрируются рис. 1-10. Мы разобрали действие этих законов, уже зная о зарядах на различных ионах и о том, что 96485 Кл представляют собой суммарный заряд 6,022 10 электронов. Исторически все происходило наоборот Фарадей и другие ученые использовали опыты по электролизу для установления зарядов на ионах. Ход их рассуждений можно понять, рассматривая табл. 1-9. Если для выделения 1 моля меди требуется вдвое больше электричества, чем для выделения 1 моля серебра (предполагается, что мы уже знаем атомные массы этих двух металлов и можем вычислить молярные массы каждого из них). [c.46]


    Оксид серебра содержит 93,05 вес. % серебра. Чему равна атомная масса серебра  [c.292]

    По данным Дюлонга и Пти, удельные теплоемкости свинца и серебра равны соответственно 0,123 и 0,233 Дж град г Пользуясь этими данными, выберите правильные атомные массы из значений, полученных при решении примеров 3 и 4. [c.293]

    Приближенное значение атомной массы серебра = —= 107 [c.293]

    Покажите, что если соединительный вес серебра в оксиде серебра равен 107,1 г, а формула оксида А 0 , то атомная масса серебра определяется соотношением 214,2 (у/х). [c.296]

    Позднее (1942) эта теория получила экспериментальное подтверждение в работах А. П. Жданова, который, используя наблюдаемый иногда полный распад атомных ядер под действием космических лучей, определил число протонов, получаемых при таком распаде (он провел эти подсчеты для ядер атомов серебра и брома). [c.51]

    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    Во вторичной реакционной зоне окисление горючих газов идет до конца, т. е. в случае углеводородов — до образования СОг и НгО. В этой зоне преобладают радикалы с окислительным действием (НзО-, СО-, 0-, ОН-, N0-, НСО-), и она является предпочтительной для наблюдений атомной абсорбции элементов, не образующих термостойких оксидов (медь, серебро, золото, цинк, марганец и т. п.). Измерения в этой зоне характеризуются наибольшей стабильностью и наименьшими шумами. [c.146]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]

    При увеличении поляризуемости анионов катионом серебра (переход от ионной к атомной связи) происходит постепенное уменьшение растворимости и углубление окраски соответствующих соединений  [c.647]

    Написать конфигурации атомных орбиталей, меди, серебра и золота. [c.104]

    Обозначив массу 1 моля неизвестного металла за х, в соответствии с данными задачи определим атомную массу металла (уравнение 1). Атомная масса неизвестного металла равна 108 у. е., следовательно, неизвестный металл — серебро. [c.145]

    Атомные радиусы элементов подгруппы меди невелики / (- =128 пм Лд = / д = 144 пм. (Для сравнения укажем радиусы атомов щелочных металлов, находящихся в четвертом, пятом и шестом периодах, как и элементы подгруппы меди Г = 236 пм, Гр.[,==248 пм / 05 = 268 пм. Поэтому медь, серебро и золото имеют высокие значения энергий ионизации. [c.226]

    При нагревании 65,1 г оксида ртути (П) и 69,4 г оксида серебра (I) выделяются одинаковые количества кислорода, именно 4,8 г. Рассчитайте а) молекулярные массы того и другого оксида б) атомные массы ртути и серебра. [c.9]


    Шульце и Тиле [166] тоже нроводили окисление этилена на серебряном катализаторе. Они утверждают, что окисление этилена тормозится продуктами его окисления — главным образом водой. Авторы предполагают, что определяюш им фактором в окислении является температура поверхности катализатора, а не газового потока. Почти все исследователи, занимающиеся каталитическим окислением, рассматривали возможность различия между этими двумя температурами. Шульце в своей работе хотел подтвердить постулат Туигга о том, что адсорбированный атомный кислород определяет скорость реакции. Он попытался покрыть поверхность серебра атомным кислородом, используя КаО как источник кислорода. Однако полученные им результаты неубедительны. Тогда он попытался получить атомный кислород на поверхности таким образом, что сначала пропускал над катализатором кислород, затем азот, потом азот и этилен и, наконец, снова азот. Он надеялся, что прореагирует смесь этилена и азота с атомным кислородом, образованным на поверхности. [c.269]

    Хлорат-ион переводят в хлорид-ион действием FeSO . Затем осаждают Ag l, осадок растворяют в 1,42 N NH4OH и определяют количество серебра атомно-абсорбционным методом при 328,3 нм. Если анализируемый раствор содержит хлорид-, бромид-, иодид-, иодат- и периодат-ионы, их удаляют перед восстановлением хлорат-иона в виде соответствующих солей серебра. Мешают ионы бромата, ртути(1) и ртути(11) [800]. [c.125]

    Исследование влияния промоторов на активность алюмомолибдено-вых катализаторов, вьшолненное на реакхщи гидрообессеривания тио фена при 300 °С, атомном отношении металл молибден = 0,5, показало, что [83] активность катализатора снижается в последовательности никель - 63,5% кобальт - 51,5% палладий - 18,8% платина - 16,7% алюминий -16,5% цинк - 15,8% , хром - 14,4% титан - 14,1% вольфрам - 13,0% рутений - 11,0% ванадий - 10,3% медь - 8,6% железо — 8,4% серебро — 83% свинец — 7,5% сурьма — 5,6% без металла - 14,7%. Оптимальное сочетание этих металлов определяет наивысшую активность системы. [c.101]

    Сопоставляя выделявшиеся массы металлов с атомными массами тех же металлов, находим, что выделяется 1 мол[. атомов серебра, /г моля атомов меди н Д моля атомов олова. Другими словами, количества образовавшихся на катоде веш,еств ргвиы их эквивалентам. К такому же результату приводит и измерение количеств веществ, выделяющихся па аноде. Так, в первом, третьем и четвертом приборах выделяется по 35,5 г хлора, а во птором — 8 г кислорода штрудпо видеть, что и здесь вещества образуются в количествах, равных их эквивалентам. [c.299]

    Если для простоты взять образец оксида серебра массой 100 г, в нем должно содержаться 93,05 г серебра на каждые 6,95 г кислорода. Следовательно, соединительный вес серебра (приходящийся на 8,00 г кислорода) равен 93,05 г (8,00 г/6,95 г) = 107,1 г. Один моль атомов кислорода соединяется с вдвое больщим количеством серебра, т.е. с 214,2 г. В данном случае выбор атомной массы ограничен набором значений, кратных величине 107,1 г или частных от ее деления на целые числа, в зависимости от предполагаемой формулы оксида  [c.292]

    Следовательно, в предыдущих примерах следует выбрать в качестве правильных атомных масс значения 207,2 для свинца и 107,1 для серебра после этого нетрудно найти и правильные формулы их оксидов PbOj и AgjO. [c.293]

    При воздействии света происходит разложение AgBr на металлическое серебро и атомный бром. Атомы брома реагируют с желатиной эмульсионного слоя, а Ag в виде мельчайших частиц остается в неразложенном AgBr. При проявлении пленку или бумагу обрабатывают растворами, содержащими восста- [c.589]

    Строение электронных уровней атомов благородных металлов характеризуется почти полной или даже полной застройкой /-подуровня предпоследнего уровня. Способность к укомплектованию -подуровня 10 электронами особенно проявляется у атома палладия за счет перехода двух электро1[ов с подуровня 5д (см. табл. 1.1 Приложения). У элементов с четными атомными номерами известно много устойчивых изотопов у рутения и осмия по семь, у палладия и платины по шесть, а у элементов с нечетными атомными номерами — немного у родия и золота по одному, у серебра и иридия по два. Кроме устойчивых у этих элементов известно много радиоактивных изотопов. [c.324]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Даже при таких малых деформациях кажущийся модуль Юнга зависит от скорости деформирования. Это указывает, что Е неоднозначно определяется энергией упругого деформирования угловых связей в цепях, длиной связей и межмолеку-лярными расстояниями, но, кроме этого, характеризуется чувствительностью ко времени смещений атомов и небольших атомных групп. В следующей области деформации (1—5%) напряжение и деформация уже не пропорциональны друг другу. Здесь происходят структурные и конформационные перестройки, которые обратимы механически, но не термодинамически. В этом случае говорят о неупругом (вязкоупругом в узком смысле), или параупругом, поведении. За пределом вынужденной эластичности начинается сильная переориентация цепей и ламеллярных кристаллов, а сам процесс обычно носит название пластическое деформирование . Под чисто пластическим деформированием можно понимать переход от одного равновесного состояния к другому без внутренних напряжений. Последнее особенно важно в связи с тем, что следующая после предела вынужденной эластичности деформация связана главным образом с механически обратимыми неупругими конфор-мационными изменениями молекул, а не с их перемещением друг за другом. До тех пор пока не достигнуто состояние равновесия с помощью соответствующей термообработки, сильно вытянутые образцы могут в значительной степени возвращаться в исходное состояние после снятия напряжения. Исходя из содержания настоящей книги, основное внимание следует уделять не процессам, вызывающим или сопровождающим молекулярную переориентацию (которая в основном понимается как эффект упрочнения), а процессам повреждения, т. е. разрыва цепи, образования пустот и течения. Последние процессы постепенно нарастают в области деформаций сразу же за пределом вынужденной эластичности вплоть до окончательного разрушения. К числу процессов, вызывающих повреждения, следует также отнести явление вынужденной эластичности при растяжении или образование трещины серебра в стеклообразных полимерах, которые будут рассмотрены в гл. 9. [c.38]

    Рассмотренные выше две газовые смеси взаимно дополняют друг друга и совместно позволяют определять примерно 70 элементов. Все другие типы горючих газовых смесей имеют в атомно-абсорбционном анализе значительно более узкое применение. Так, воздуш о-иропановое пламя пригодно в основном для определения щелочных металлов, кадмия, меди, свинца, серебра и цинка. Пламя смеси оксида азота (I) с водородом имеет окислительный характер и его можно применять лишь для преодоления каких-либо особых помех, возникающих при анализе. [c.147]

    Итак, мы приходим к важному выводу хемосорбированные молекулы и сорбент, т. е. молекулы, присоединенные к твердому телу атомными связями, и данное твердое тело (как атомы или молекулы примеси, соединенные с атомами твердого тела атомными связями, и соответствующее твердое тело), представляют собой единую квантовую систему. Подобные системы, как мы видим, могут образовать как неорганические вещества, например примеси 2пО или СнгЗ в сульфиде цинка, так и органические с неорганическими, в частности красители-сенсибилизаторы, адсорбированные А Вг. Последние могут находиться на поверхности бромида серебра в виде коллоидных частиц—агрегатов молекул. Как указывает А. Н. Теренин, существует беспрепятственный перенос энергии или электронов по таким агрегатам даже в том случае, когда они не имеют кристаллического строения. Следовательно, контактное соединение (см. гл. IV) аморфного и кристаллического вещества является также единой квантовой системой. [c.132]

    Сопоставляя выде.пшшнеся массы металлов с атомными массами тех же ме-тал., (Ов находим, что выделяется 1 моль атомов серебра, 7г моля атомов меди и /а моля атомов олова. Другими словами, ко.пичества образовавшихся на катоде веществ равны их молярным массам экви-ва.пентов, К такомл же результату приводит и измерение количеств веществ, выделяющихся на аноде. Так, в первом, третьем и четверто.м приборах выделяется по 35,5 г хлора, а во втором — 8 г [c.285]

    Для определения атомных масс азота и хлора пары летучего соединения — хлористого нитрозила NO I — были пропущены последовательно через нагретые трубки (предварительно взвешенные) с металлическим серебром, медью и кальцием. При этом хлористый нитрозил разложился хлор соединился с серебром, кислород — с медью, а азот — с кальцием. Увеличение масс трубок было соответственно равно 7,1 г 3,2 г и 2,8 г. Рассчитайте из этих данных атомные массы хлора и азота, принимая атомную массу кислорода равной 16. [c.8]


Смотреть страницы где упоминается термин Серебро атомный вес: [c.584]    [c.531]    [c.230]    [c.36]    [c.170]    [c.566]    [c.360]    [c.28]    [c.131]    [c.176]    [c.216]   
История химии (1975) -- [ c.198 ]

История химии (1966) -- [ c.199 ]




ПОИСК







© 2025 chem21.info Реклама на сайте