Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глицин, окисление

    При попадании в систему кислорода возможно окисление МЭА. При этом последовательно образуются а-аминоальдегид, глицин, гликолевая кислота, щавелевая и муравьиная кислоты. Образовавшиеся кислоты могут приводить к коррозии аппара- [c.62]

    Холестерин в организме превращается в ряд веществ, в том числе в стероидные гормоны. Однако в количественном отношении наиболее важными продуктами превращения холестерина являются желчные кислоты (рис. 12-16). Эти мощные эмульгирующие агенты поступают из печени в желчный пузырь и оттуда в двенадцатиперстную кишку. В дальнейшем значительная часть выделенных желчных кислот вновь всасывается в кишечнике, возвращается в печень и используется повторно. Образование желчных кислот включает удаление двойной связи в холестерине, инверсию у С-3 с образованием За-ОН-группы, последующее гидроксилирование и р-окисление боковой цепи. Далее желчные кислоты (или их СоА-производные) конъюгируют с глицином или таурином, образуя соли желчных кислот — гликохолевую или таурохолевую кислоты (рис. 12-16). [c.584]


    Таким образом, первоначальным продуктом окисления является а-аминоальдегид, затем глицин, гликолевая кислота и щавелевая кислота. В работе [136] показано, что щавелевая кислота переходит в муравьиную кислоту [c.210]

    Дикарбонильные соединения или их эквиваленты с той же степенью окисления при взаимодействии с эфирами глицина образуют эфиры пиррол-2-кар-боновой кислоты [c.338]

    Бетаин глицина образуется в организме при окислении амино-спирта холина и служит донором метильных групп при биосинтезе метионина, пуриновых и пиримидиновых оснований, адреналина и других биологически значимых веществ  [c.45]

    Установлен ряд аминокислот по их комплексообразующей способности цистеин > гистидин > аспарагин > метионин > глицин, аланин, валин, фенилаланин. Определен состав твердых соединений, выделенных из золотосодержащих растворов гистидина и фенилаланина золото в них находится в состоянии окисления (I), состав соединений отвечает формулам с соотношением золота к аминокислоте 1 1. Методом ИК-спектроскопии установлены связь металла с карбоксильной и аминогруппами в соединении золота с фенилаланином и связь металла с аминогруппой и азотом имидазольного кольца в соединении с гистидином. [c.154]

    Глицин и глутаминовую кислоту рекомендуется [56] заменять (х-аланином или р-фенил-а-аланином. При pH >9,5 эти аминокислоты предотвращают окисление Со кислородом воздуха, и по-, этому при прямом потенциометрическом титровании Со раствором Кд[Ре(СК)б] получаются удовлетворительные результаты. При pH 12 в присутствии 100-кратных по массе количеств аминокислот можно определять 0,5 мг и более Со в 20 мл раствора в присутствии больших количеств N1 РЬ , Си , В1 1 Ре . [c.31]

    Ацетальдегид получается только из пропиленгликоля его и используют для определения последнего. При этом необходимо отделить ацетальдегид от формальдегида, который является продуктом окисления всех трех соединений в смеси. Сначала через раствор, полученный после обработки смеси йодной кислоты, пропускают диоксид углерода. Высоколетучие формальдегид и ацетальдегид улетают с диоксидом углерода и поглощаются специальными растворами. Формальдегид поглощается преимущественно раствором глицина [c.348]

    Санжер установил полную последователшость аминокислот в инсулине при помощи частичного гидролиза химотрипсином (1949—1950) и показал, что рассчитанный теоретически молекулярный вес (5734) близок к экспериментальным данным. Он нашел, что в молекуле белка одна полипептидная цепь (цепь А) имеет N-концевой глицин эта цепь связана дисульфидными связями со второй цепью (цепью В), имеющей N-концевой остаток фенилаланин. Окисление надмуравьиной кислотой расщепляет связь S—S, и образуются два цистеинилпептида. [c.698]


    ЭЛАСТИН, фибриллярный белок, придающий упругость коже, легочной ткани, связкам, кровеносным сосудам. Предшественник Э.— тропоэластин, к-рый секретируется клетками гладких мышц в виде полипептидной цепи мол. м. 100 ООО, богат остатками глицина, аланина, пролина и валина, но содерж1[Т очень мало полярных аминокислот. Он подвергается интенсивной пост-трансляциониой модификации, в частности ограниченному протеолизу и образованию поперечных связей вследствие окисления боковых цепей лизина и коидеисации образующихся альдегидных групп. Соединение полипептидных цепей Э. в сложную сетку обусловливает его большую упругость и нерастворимость в воде. Э. гидролизуется только протеиназами с особой специфичностью (эластазами). [c.696]

    Другая катаболическая реакция треонина [уравнение (14-29), стадия б]—это расщепление на глицин и ацетальдегид, катализируемое серин-оксиметилтрансферазой [уравнение (8-19)]. Третьим и количественно более существенным путем является дегидрирование [уравнение (14-29), стадия в] и декарбоксилирование с образованием аминоаце-тона [уравнение (14-29), стадия г]. Аминоацетон выводится с мочой, но он может также быть окислен [уравнение (14-29), стадия д] в ме-тилглиоксаль, который может подвергаться превращению в D-лактат под действием глиоксилазы (гл. 7, разд. Л). Аминоацетон служит также источником 1-амино-2-пропанола при биосинтезе витамина Bis (стадия е, дополнение 8-Л). Было постулировано, что метилглиоксаль является природным регулятором роста, препятствующим чрезмерной пролиферации клеток у животных [63 ]. [c.114]

    Осн. пром. способ получения И.-взаимод. анилина с монохлоруксусной к-той при т-ре ок. 100 °С в присут. Fe(OH)2, плавление при 200 °С образовавшегося N-фенил-глицина (в виде К.<оли) в смеси с NaOH, КОН и NaNH и окисление под действием О воздуха образовавшегося индо-ксилата Na. [c.225]

    Получают Н. п. кристаллизацией из водного р-ра Na Oj и HjO, (причем содержание H Oj в р-ре должно быть не менее 2%) шш орошением сухого На СОз конц. р-ром H Oj с послед, сушкой при 40-60°С. Применяют Н.п. в осн. в качестве отбеливателя в составе синтетич. моющих ср-в, в текстильной и хим. пром-сти для окисления красителей и расшлихтовки ткаией, как дезинфицирующее, бактерицидное и деконтаминирующее ср-во. Для стабилизации промышленного Н. п. и увеличения сроков его хранения в состав синтетич. моющих ср-в предложено вводить глицин, полиэтиленгликоль, гексациклофосфат Na, бораты и т. п., а также придавать продукту форму гранул к покрывай, их тонким слоем нерастворимой в воде соли - карбоната, сульфата или силиката Ва, Са или Mg. в. я. Росоловский. [c.184]

    Исходными субстратами в биосинтезе порфирнновых соед. служат сукцинат и глицин. Порфириновые соед. выполняют в О.в. важные ф-ции, принимая участие в окислит.-восстановит. процессах. В частности, в составе гема в гемоглобине порфириновое кольцо участвует в переносе О2 в крови. Порфириновое кольцо входит в состав цитохромов и хлорофиллов. Катаболизм порфиринов в животном организме состоит в раскрытии и частичной деградации пор-фиринового кольца. Продукты катаболизма в виде окраш. соед. (биливердина, билирубина и др.) наряду с продуктами частичного окисления стероидов (холевыми к-тами) выводятся через желчные протоки в кишечник. [c.315]

    Осуществлен синтез данного соединения введением гидрок-сиэтильной группы в молекулу глицина при взаимодействии последнего с оксидом этилена (выход 50%) [93] либо с эти-ленхлоргидрином (60%) [94]. Предложено получение кислоты с выходом 70% гидрофазным окислением диэтаноламина на палладиевом или платиновом катализаторе в щелочной среде при 120 °С и давлении 10 Па [95]. [c.56]

    Одновременное влияние катиона-окислителя и снижения pH может быть проиллюстрировано на примере системы Со + — ЭДТА [735] В сильнокислых растворах (1,0—7,0 М H IO4) при ионной силе ц = 5—7 ЭДТА окисляется ионами кобальта уже при комнатной температуре Основным продуктом окисления является СО2 Кроме того, образуются формальдегид, эти-лендиамин-М,Ы-диуксусная кислота, этилендиамин-М,М -диук-сусная кислота, этилендиамин, глицин Вместе с тем щелочные растворы этилендиаминтетраацетата кобальта(III) вполне устойчивы Аналогичные процессы наблюдаются и для системы кобальт(III) ГЭДТА [735] [c.387]

    Еще задолго до того, как был разработан метод радиоактивных меток, Кнооп в 1904 г. синтезировал жирные кислоты, которые в качестве метки содержали на конце, противоположном карбоксильному, ковалентно связанное бензольное кольцо. Он синтезировал меченые жирные кислоты, содер-жавщие как четное, так и нечетное число атомов углерода в неразветвленной цепи, и ввел их с пищей собакам. Затем из мочи собак он выделил два соединения, гиппуровую кислоту и фенилацетуровую кислоту — амиды глицина соответственно с бензойной и фенилуксусной кислотами. Кнооп показал, что фенилуксусная кислота образовалась из жирных кислот, имевщих четное число атомов углерода, тогда как бензойная кислота — из жирных кислот с нечетным числом атомов углерода. Отсюда Кнооп сделал вывод, что при окислении жирных кислот происходит отщепление сразу двух атомов углерода, и предложил свою знаменитую теорию р-окисления. [c.311]


    На старых установках исиользуется содовый раствор с добавками соединений мышьяка, в качестве катализатора окисления иоглощеппого сероводорода. Сера выделяется из раствора на стадии регенерации поглотителя кислородом воздуха, затем отделяется на центрифуге или на фильтре. На новых установках мышьяк заменяется на глицин, в этом случае абсорбент становится активированным поташом и регенерация раствора осуществляется ири помощи теила, с иолучепием кислого газа, который требует дальнейшей утилизации. Химические реакции, происходящие ири очистке газа, следующие  [c.439]

    Другой белок сои, глицинии, был соединен с эфирами жирных кислот [47]. Полученный таким путем пальмитоилглици-нин обладает эмульгирующей активностью, в два раза большей, чем у нативного глицинина [48]. Стойкость эмульсий, наоборот, снижается в присутствии поверхностно-активных молекул, таких, как детергенты или моноглицериды [46]. Все производные про дукты гидролиза или окисления липидов, имеющие достаточно выраженный полярный характер, могут оказывать на эмульсии тоже дестабилизирующее влияние. [c.317]

    Низкомолекулярные биорегуляторы глутатион, или у-глутамил-цис-теинил-глицин. В этом трипептиде N-концевую пептидную связь образует у-СООН-группа глутаминовой кислоты, а сам глутатион существует в двух формах - окисленной и восстановленной (GSSG и GSH) соответственно (рис. 7). [c.20]

    Структуры всех 20 нормальных аминокислот (компонентов, выделенных из гидролизатов белков) были установлены к 1935 г. самым первым Браконно в 1820 г. был охарактеризован глицин, самым последним — треонин. Хотя цистеин входит в состав многих пептидов и белков как таковой, Однако их функционирующие формы содержат окисленный продукт — цистин, дисульфидные мостики которого могут образовываться как внутри-, так и межмолекулярно. За исключением глицина, все кодируемые аминокислоты белков оптически активны и одинаково хиральны при асимметрическом ос-углеродном атоме. По аналогии, с обычной номенклатурой для углеводов, их обычно рассматривают как соединения, обладающие -конфигурацией, при этом -серин считают родоначальным соединением. За исключением цистеина, конфигурация всех аминокислот соответствует S-конфигурацни по системе Кана-Ингольда-Прелога положение серы в цистеине таково, что -цистеин имеет / -конфигурацию. Изолепцин и треонин имеют по второму центру асимметрии при -углеродных атомах найденные в белках (2S, 35)-2-амино-3-метилвалериановая и (2S, 3/ )-2-амино-3-гидроксимасляная кислоты являются стереоизомерами. [c.227]

    Следует отметить, что в выяснение биологической роли витамина В и пиридоксальфосфата в азотистом обмене существенный вклад внесли А.Е. Браунштейн, С.Р. Мардашев, Э. Снелл, Д. Мецлер, А. Майстер и др. Известно более 20 пиридоксалевых ферментов, катализирующих ключевые реакции азотистого метаболизма во всех живых организмах. Так доказано, что пиридоксальфосфат является простетической группой аминотрансфераз, катализирующих обратимый перенос аминогруппы (КН,-группы) от аминокислот на а-кетокислоту, и декарбоксилаз аминокислот, осуществляющих необратимое отщепление СО от карбоксильной группы аминокислот с образованием биогенных аминов. Установлена коферментная роль пиридоксальфосфата в ферментативных реакциях неокислительного дезаминирования серина и треонина, окисления триптофана, кинуренина, превращения серосодержащих аминокислот, взаимопревращения серина и глицина (см. главу 12), а также в синтезе б-аминолевулиновой кислоты, являющейся предшественником молекулы гема гемоглобина, и др. [c.227]

    Бензойная кислота и се эфиры содержатся во многих эфирных маслах, толуансхом и перуанском бальзамах, бензойной смоле. Производное бензойной кислоты и глицина - гиппуро-вая кислота С5Н5СОННСН2СООНТ - продукт жизнедеятельности животных. Основным промышленным способом получения бензойной кислоты является жидкофазное окисление толуола воздухом при 130 - 160 °С и давлении 0,3 - 0,8 МПа в присутствии бензоатов Со и Мп бензойная кислота может быть получена также гидролизом бензотрихлорида. [c.141]

    Ряд аминокислот может подвергаться сбраживанию клостридиями только парами. Механизм процесса был расшифрован Л.Стиклендом (L. Sti kland) в 1934 г., показавшим, что при этом происходит сопряженное окисление-восстановление пары аминокислот, одна из которых окисляется, другая — восстанавливается. Такой тип сбраживания аминокислот получил название реакции Стикленда. Окисляемыми аминокислотами, т.е. донорами электронов, служат аспарагин, аланин, валин, серин, гистидин и др. Восстанавливаемые аминокислоты — глицин, пролин, орнитин, аргинин и др. [c.245]

    Эффективным представляется использование аминокислот как пищевых добавок, имеющее двоякое значение в качестве лечебных компонентов, а также для улучшения питательной ценности пищевьгх продуктов и придания им оптимальных вкусовых свойств. Так, глутаминовая кислота, помимо фармакологического эффекта, улучшает вкус мясных продуктов, является весьма важным ингредиентом при консервировании и замораживании. Многие другие аминокислоты также улучшают вкус тех или иных пищевых продуктов. Термическая обработка пищи в присутствии таких аминокислот, как валин, метионин или глицин, приводит к получению своеобразного аромата мясных или хлебобулочных изделий. о-Триптофан во много раз слаще сахарозы и может использоваться для диабетического питания. В пищевой промышленности такие аминокислоты, как глицин, лизин, цистеин, используются в качестве антиоксидантов, стабилизирующих ряд витаминов, например аскорбиновую кислоту, и замедляющих пероксидное окисление липидов. Кроме того, будучи сладким на вкус, глицин применяется в пищевой промышленности при производстве приправ и безалкогольных напитков. [c.27]

    Синтез хлорофилла у растений складывается из нескольких этапов, которые в свою очередь состоят из ряда последовательных реакций. Из низкомолекулярных соединений (а-атомов уксусной кислоты и глицина) образуются структурные единицы— пиррольные кольца, которые затем участвуют в образовании тетрапиррола. В результате последовательных реакций образуется магний-винил-феопорфирин-протохлорофиллид, из которого посредством восстановления двойной связи в 4-м пир-рольном кольце образуется хлорофиллид, фитиловый эфир которого является хлорофиллом А. Окисление хлорофилла А приводит к образованию хлорофилла В. [c.226]

    Аденозинтрифосфат принимает участие в чрезвычайно разнообразных реакциях в обратимой передаче фосфатной группы креатину с образованием другого нестабильного фосфата в многочисленных реакциях фосфорилирования, которые тесно сопряжены с окислением углеродистых субстратов типа глюкозы в ферментативном образовании связей С — N. например, при взаимодействии глицина, 5-фосфорибозиламина и АТФ, в результате которого образуется свободный ион фосфата, и т. д. [c.523]


Смотреть страницы где упоминается термин Глицин, окисление: [c.383]    [c.351]    [c.240]    [c.121]    [c.211]    [c.364]    [c.546]    [c.144]    [c.25]    [c.386]    [c.281]    [c.238]    [c.499]    [c.575]    [c.47]    [c.579]    [c.392]    [c.243]    [c.6]   
Биохимия растений (1966) -- [ c.405 ]




ПОИСК





Смотрите так же термины и статьи:

Глицин

Глициния



© 2025 chem21.info Реклама на сайте