Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептидная цепь дисульфидные связи

    Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые именно таким образом был установлен для белка инсулина. Молекула инсулина имеет молекулярную массу 5733. Она состоит из двух полипептидных цепей, одна из которых содержит 21 аминокислотный остаток, вторая 30. Последовательности аминокислот в короткой и длинной цепях были определены в период 1945—1952 гг. Сенгером и его сотрудниками. Обе цепи в молекуле инсулина соединены дисульфидными связями S—S, образованными между остатками цистина. [c.393]


    Полипептидные цепи способны образовывать а-спиральную конформацию (рис. 6.10). Такая конформация характеризуется максимальным насыщением водородных связей вдоль оси спирали. Боковые заместители аминокислотных звеньев направлены наружу и находятся вне спирали. Дополнительным фактором, фиксирующим а-спиральную конформацию макромолекулы белка, является образование внутрицепных дисульфидных (цистиновых), сложноэфирных и солевых связей. Возникновение двойных и тройных спиралей обусловлено интенсивными межмолекулярными взаимодействиями между ними. Такие спиральные одно- и многоцепочечные макромолекулы являются примером стержнеобразных жестких цепей, характеризующихся /ф < 0,63. [c.344]

    Большое значение в биохимии белков имеет образование между полипептидными цепями дисульфидных и водородных связей. [c.292]

    Полипептидные цепи в молекулах белков часто бывают связаны между собой за счет дисульфидных связей цистина, которые способны образовывать мостики между разными участками одной цепи или разных цепей, разрываться и вновь образовываться, связывая другие участки цепей. Дисульфидные связи мещают определению последовательности аминокислот и поэтому их разрушают перед анализом, окисляя надмуравьиной кислотой или восстанавливая сульфгидрильными соединениями, как бы освобождая при этом сами цепи. [c.25]

    Превращение фибриногена в фибрин. Фибриноген - это гликопротеин, который синтезируется в печени и содержится в плазме крови в концентрации 8,02—12,9 мкмоль/л (0,3 г/л). Молекула фибриногена состоит из 6 полипептидных цепей, которые связаны друг с другом дисульфидными связями. [c.317]

    Природа предоставила нам редкую возможность установить структуру фермент-субстратных комплексов трипсина и химотрипсина с полипептидами, создав множество ингибиторов-полипептидов, которые очень прочно связываются с трипсином и химотрипсином, поскольку зафиксированы в той конформации, которую субстрат принимает при связывании [52]. Эти полипептиды не гидролизуются при физиологических условиях, так как подвижность аминогруппы, которая высвобождается при расщеплении пептида, ограничена и она не может диффундировать из активного центра фермента. При устранении ограничений в панкреатическом ингибиторе трипсина путем восстановления дисульфидного мостика в полипептидной цепи пептидная связь между Ьуз-15 и А1а-16 легко расщепляется трипсином [53]. Структура трипсина, его комплекса с основным панкреатическим ингибитором трипсина и свободного ингибитора была установлена при разрешении 1,4, 1,9 и 1,7 А соответственно [54]. Полученные данные относятся к числу наиболее точных — положение атомов известно с точностью 0,1—0,2 А. Эти и другие исследования дали следующую информацию относительно связывания субстратов [55—65]. [c.39]


    По-видимому, основной стадией цепной реакции щерсть + моль дыры + возросшее количество моли является расщепление дисульфидных связей цистина в полипептидных цепях пищеварительными ферментами личинок моли. Предложить метод защиты шерсти от моли, основанный на химическом изменении дисульфидных связей. [c.395]

    Ш Третичная структура — реальная трехмерная конфигурация, возникающая при закручивании в спираль полипептидных цепей белков, происходящем под действием дисульфидных, водородных и иных связей. [c.258]

    В пространстве закрученная в спираль полипептидная цепь образует третичную структуру белка (рис. 3). Она поддерживается взаимодействием разных функциональных групп полипептидной цепи. Так, например, между атомами серы часто образуется дисульфидный мостик (—5—8—), между карбоксильной группой и гидроксильной группой имеется сложноэфирный мостик, а между карбоксильной группой и аминогруппой может возникнуть солевой мостик. Для этой структуры характерны и водородные связи. Третичная структура белка во многом обусловливает специфическую биологическую активность белковой молекулы. [c.19]

    У большинства белков полипептидные цепи свернуты особым образом в клубок — компактную глобулу (рис. 22). Эта структура поддерживается за счет гидрофобных взаимодействий, а также водородных, дисульфидных, ионных и других связей. [c.650]

    Химотрипсин — наиболее хорошо изученный протеолитический фермент. Он катализирует гидролитическое расщепление пептидной (или сложноэфирной) связи, в образовании которой принимают участие фенилаланин, тирозин или триптофан. Образование химотрипсина происходит в поджелудочной Железе первоначально образуется неактивный химотрипсиноген (зимоген) — резервная форма фермента. Основной компонент, химотрипсиноген А, представляет собой полипептидную цепь из 245 аминокислотных остатков и 5 дисульфидных мостиков. Активация и образование активного о -химотрипсина осуществляются сложным путем. После триптического расщепления связи Аг -11е последовательно одии за другим из молекулы отщепляются дипептиды 8ег -Аг и ТЬг -А5п . В результате одноцепочечный предшественник переходит в трехцепочечную молекулу фермента. Цепи А, В и С химотрипсина соединены исключительно дисульфидными связями. Рис. 3-32 показывает пространственную модель химотрипсина, установленную на основе рентгеноструктурных данных. [c.408]

    Химотрипсин, Химотрипсин (КФ 3.4.21.1) секретируется вфор-ме профермента — химотрипсиногена поджелуд очной железой позвоночных животных активация профермента происходит в двенадцатиперстной кишке под действием трипсина. Физиологическая функция химотрипсина — гидролиз белков и полипептидов. Химотрипсин атакует преимущественно пептидные связи, образованные карбоксильными группами остатков тирозина, триптофана, фенилаланина и метионина. Он эффективно гидролизует также сложные эфиры соответствующих аминокислот. Молекулярная масса химотрипсина равна 25 ООО, молекула его содержит 241 аминокислотный остаток. Химотрипсин образован тремя полипептидными цепями, которые связаны дисульфидными мостиками. Первичная структура фермента установлена Б. Хартли в 1964 г. [c.197]

    При разрушении части дисульфидных связей волосы можно растянуть более, чем в два раза по сравнению с первоначальной длиной. Рентгенограмма таких волос показывает, что цепи кератина в них имеют структуру типа складчатого слоя. По-видимому, в этом случае соседние полипептидные цепи в слое параллельны, т. е. направлены в одну сторону (на аминокислотный остаток вдоль оси приходится 325 пм, в 2,17 раза больше, чем в а-спирали), а не антипараллельны (длина остатка 350 пм в 2,33. раза больше, чем в а-спирали). [c.433]

    Сывороточный А. составляет 50% от массы всех содержащихся в сыворотке крови белков. Состоит из одной полипептидной цепи (мол м. 66,5 тыс), включающей 585 аминокислотных остатков и образующей 9 петель, фиксированных 17 дисульфидными связями. Предполагается, что цепь уложена в три более или менее независимых кооперативных домена. В молекуле имеется одна своб. меркапто-группа, к-рая может участвовать в образовании дисульфидов, что лежит в основе пускового механизма денатурации этого белка. [c.108]

    Под четвертичной структурой понимают построение олигомерного белка из определенного комплекса нескольких полипептидных цепей. Ассоциация двух или нескольких полипептидных цепей происходит под действием межмолекулярных взаимодействий между полярными, ионизируемыми и неполярными боковыми группами посредством диполь-дипольных взаимодействий, водородных связей, гидрофобных взаимодействий и образования ионных пар. В исключительных случаях четвертичная структура также стабилизируется дисульфидными мостиками. [c.386]

    Недавно были исследованы [35] экстракция запасных белков из пшеницы различными растворителями, а также свойства экстрагируемых белков в зависимости от условий процесса. Сравнивали 70 %-ный этанол, 55 %-ный изопропанол, 50 %-ный н-пропанол в присутствии или в отсутствие уксусной кислоты, а также влияние восстановления дисульфидных связей, температуры (4, 20, 60 °С) и предварительного удаления липидов. Было показано, что экстрагирование оптимально, когда проводится неоднократно при повышенных температурах и в присутствии восстановителей. н-Пропанол представляется наилучшим растворителем, так как экстрагирует все полипептиды в любых условиях. В присутствии восстановителей извлекают большую часть полипептидов, которые, как считается, обычно входят в состав глютенинов. Но, основываясь на их аминокислотном составе и на результатах экспериментов по биосинтезу белков, их рассматривают здесь как проламины с высокой молекулярной массой, образованные из нескольких полипептидных цепей, которые связаны между собой дисульфидными мостиками [136, 137]. [c.180]


    Кератин шерсти и волос имеет в качестве основного структурного элемента а-спиральные полипептидные цепи, стабилизированные водородными связями и межспиральными дисульфидными мостиками. Аминокислотный состав этого а-кератина обнаруживает высокое (11%) содержание цистеина и гидрофобных аминокислот. [c.421]

    Пролин и оксипролин полностью устойчивы к действию фермента.- Цистеин в продуктах расщепления не был обнаружен. Полуцистин, если он присутствует в продуктах расщепления, мог образоваться за счет разрыва пептидной связи при этом связь с полипептидной цепью дисульфидным мостиком сохраняется. Окисление остатков цистина в цистеиновую кислоту не должно давать способную отщепляться под действием карбоксипептидазы группу, так как она содержит заряженную боковую цепь, но восстановление и алкилирование до --S H2 ONH2-rpynn приводят к образованию нейтрального остатка. Такой остаток был недавно обнаружен [198] в гидроЛизатах, полученных при действии карбоксипептидазы на восстановленный и алкилированный пролактин, что свидетельствует о присутствия С-концевого полуцисти нового остатка. [c.233]

    Большинство дисульфидных связей in vitro образуется спонтанно. Как уже упоминалось, дисульфидные мостики между парами цистеиновых остатков могут объединять различные участки белка, приводя к образованиям из ковалентно связанных цепей. Дисульфидные связи встречаются также в одиночных полипептидных цепях. Остаток цистеина полипептидной цепи может объединяться только с вполне определенным остатком цистеина, поэтому набор дисульфидных мостиков строго индивидуален для данного белка [94—100]. Кроме того, как правило, эти связи образуются спонтанно in vitro, не требуя внешних воздействий, например, ферментов [94]. Некоторые известные исключения, например дисульфидные связи инсулина и химотрипсина [101], обсуждаются в разд. 8.2. [c.66]

    Инсулин — простой белок (стр. 297). Состав его молекул выражается формулой С Нд ЫбйО зЗв, мол. масса около 6000. Б молекулах инсулина две полипептидные цепи, соединенные двумя дисульфидными связями (стр. 292). Одна из цепей состоит из 21, вторая — из 30 аминокислотных остатков. Таким образом, инсулин состоит из 51 аминокислотного остатка. Последовательность соединения аминокислотных звеньев друг с другом точно установлена. [c.293]

    Своеобразная конструкция, основанная на образовании дисульфидных мостиков, обнаружена в ферментах триптофаназе [121] и треониндезаминазе [122] (рис. 8.3), выделенной из Salmonella, Здесь 4 идентичные полипептидные цепи попарно связаны дисульфидными мостиками, так что белки содержат по 2 (мономерные) субъединицы. Такая асимметричная агрегация, вероятно, связана с тем обстоятельством, что эти ферменты содержат по 2 центра связывания пиридоксальфосфата. Аналогичную функцию выполняют [c.68]

    Эластические свойства кератина волос и шерсти, ио данным ронтге-ноструктурного анализа, зависят от того, что в нерастянутом белке полипептидная цепь закручена сама на себя. Растягивание развертывает петли и образуег цепь из аминокислотных единиц с периодом идентичности 3,3 А, сравнимым с таковым для фиброина. Кератин богат цистином, который образует дисульфидные поперечные связи между пептидными цепями. Шерсть может быть модифицирована, а волосы завиты путем восстановления меркаптаном для расщепления части поперечных связей и обратного окисления для образования других поперечных связей. Восстановление, которое в случае завивки производится смачиванием раствором тиогликолевой кислоты, приводит к денатурированному белку с менее жесткой структурой, допускающей растяжение и перестройку молекулы. Появление и исчезновение сульф-гидрильных групп можно проследить при помощи нитропрусоидной пробы. [c.668]

    Остов полипептидной цепи автоматически принимает ту пространственную конформацию, которая хорошо соответствует целому раду ограничений, налагаемых аминокислотным составом цепи и последовательностью аминокислотных остатков. В полипептидньк цепях нативных а-кератинов аминокислотный состав и последовательность аминокислот благоприятствуют самопроизвольному образованию а-спирали со множеством стабилизирующих ее внутрицепочечных водородных связей. а-Кератины богаты аминокислотами, обеспечивающими образование а-спирали, и содержат очшь-мало аминокислот (например, пролина), не совместимьк с существованием а-спиральной, конформации. а-Кератины особенно богаты остатками цистина (рис. 7-8), способными, как мы уже знаем (разд. 5-7), образовывать поперечные дисульфидные (—8—8—) связи между соседними полипептидными цепями. Эти связи ковалентны и потому обладают большой прочностью. Такие ковалентные поперечные связи, в образовании которых участвует много остатков цистина, связывают воедино соседние а-спирали и наделяют волокна а-кератина способностью к прочному слипанию друг с другом. [c.172]

    Полипептидная цепь пепсина связана на определенных участках тремя дисульфидными связями, играющими, по-видимому, важную роль в поддержании необходимой конформации фермента Аналогичную роль, вероятно, выполняет остаток фосфорной кислоты. Предполагают, что в активном центре пепсина имеется остаток аспарагиновой или глутаминовой кислоты в непосредственной близости к остатку тирозина. [c.304]

    Две лепсие и две тяжелые полипептидные цепи попарно связаны дисульфидными (—Б—S—)-с з ми в каждой из цепей ест виутренние дисульфидные мостики, отграничивающие разнообразные домены Сн1, Сн>, Сн>—конставтные домевы тяжелой цепи [c.87]

    Инсулин — гормон поджелудочной железы, регулирующий углеводный обмен и поддерживающий нормальный уровень сахара в крови. Недостаток этого гормона в организме приводит к одному из тяжелейших заболеваний — сахарному диабету, который как причина смерти стоит на третьем месте после сердечно-сосудистьк заболеваний и рака. Инсулин — небольшой глобулярный белок, содержащий 51 аминокислотный остаток и состоящий из двух полипептидных цепей, связанных между собой двумя дисульфидными мостиками. Синтезируется он в виде одноцепочечного предшественника — препроинсулина, содержащего концевой сигнальный пептид (23 аминокислотных остатка) и 35-звенный соединительный пептид (С-пептид). При удалении сигнального пептида в клетке образуется проинсулин из 86 аминокислотных остатков, в котором А и В-цепи инсулина соединены С-пеп-тидом, обеспечивающим им необходимую ориентацию при замыкании дисульфидных связей. После протеолитического отщепления С-пептида образуется инсулин. [c.132]

    Аминокислоты, в количестве обьрпю не менее ста, соединяются между собой пептидными связями, образуя полипептидную цепь, Пептцдная связь соединяет а-карбок-сильную группу одной аминокислоты с а-аминогруппой другой. В некоторых белках отдельные боковые цепи соединяются между собой дисульфидными мостиками, образующимися путем окисления остатков цистеина. Белки состоят из одной или нескольких полипептидных цепей. Каждый белок имеет уникальную последовательность аминокислот, которая детерминируется генетически. Определение последовательности аминокислот в белках проводят следующим образом. Сначала определяют общий аминокислотный состав, подвергая кислотный гидролизат белка хроматографии на ионообменнике, и проводят идентификацию N-кoнцeвoгo аминокислотного остатка с помощью реагента на концевую аминогруппу, например дансилхлорида. Следую- [c.43]

    Третичная структура белков предопределяет особенности взаимного расположения полипептидных цепей в фибриллах и (или) глобулярных структурах. Для каждого вида белка характерна определенная третичная структура. Третичная структура белков стабилизируется различными видами межмолекулярных контактов водородных, диполь-дипольных, солевых, дисульфидных, амидных, сложноэфирных связей. Существенное значение в формировании и фиксации третичных структур ифают гидрофобные взаимодействия в водно-белковых системах. [c.347]

    Молекула П. (мол. масса ок. 23 тыс.) представляет собой одну полипептидную цепь, построенную из 199 аминокислотных остатков и имеющую три дисульфидные связи. Установлена первичная структура П. человека и нескольких видов животных. Видовые различия в хим. строении П. немногочисленны. N-Концевое положение в полипептидной цепи П. у человека и ряда животных (напр., свинья, кит) занимает остаток лейцина, у др. животных (напр., овца, крупный рогатый скот)-остаток треонина. С-Концевым аминокислотным остатком в молекуле П. независимо от видовой принадлежности является остаток цистеина. Молекула П. обладает довольно устойчивой третичной структурой ок. 50% полипептидной цепи находится в виде а-спирали, По хим. строению, физ.-хим. и биол. св-вам П, сходен с гормоном роста (со.штотропином) и плацентарным. гак-тогеном. Считается, что эти трн регуляторных белка произошли в процессе эволюции в результате дупликации гена [c.99]

    Натуральный шелк представляет собой нить, полученную размоткой коконов шелкопряда в условиях интенсивного набухания при гидротермических обработках. Получаемая таким образом нить характеризуется сложным морфологическим строением два фиброиновых стержня соединяются в единую нить с помощью серициновой прослойки. После дополнительного удаления серицина до содержания его 20-25% коконная нить превращается в шелк-сырец, а при более глубокой отмывке (до 4-5%) - в натуральный шелк. В зависимости от своих функций (формирования армирующей основы шелка - фиброиновых стержней или обеспечения связи между ними) полипептидные цепи имеют первичную структуру, включающую большее (в фиброине) или меньшее (в серицине) количество гидрофобных аминокислотных звеньев, но четкое различие между этими белками отсутствует (рис.6.12). Связь между ними обеспечивается проходными цепями, дисульфидными и сложноэфирными мостиками, межмолекулярными водородными связями, а также через небелковые фрагменты, например через монозы. [c.376]

    Третичная структура белков, обусловленная взаимодействием боковых цепей аминокислот, не приводит к такой высокой упорядоченности структуры, как в предыдущем случае. Помимо водородных связей важным фактором стабилизации третичной структуры является образование дисульфидных связей. Молекула инсулина имеет три таких дисульфидных мостика, два из которых соединяют две отдельные полипептидные цепи в молекулу. Третичная структура часто придает белковой молекуле такую конформацию, при которой гидрофильные группы (ОН, ЫНз, СО2Н) расположены на поверхности молекулы, а гидрофобные группы (алкильные и арильные боковые цепи)[ направлены внутрь, к центру молекулы. [c.302]

    Санжер установил полную последователшость аминокислот в инсулине при помощи частичного гидролиза химотрипсином (1949—1950) и показал, что рассчитанный теоретически молекулярный вес (5734) близок к экспериментальным данным. Он нашел, что в молекуле белка одна полипептидная цепь (цепь А) имеет N-концевой глицин эта цепь связана дисульфидными связями со второй цепью (цепью В), имеющей N-концевой остаток фенилаланин. Окисление надмуравьиной кислотой расщепляет связь S—S, и образуются два цистеинилпептида. [c.698]

    В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов. Высокая химическая специфичность ферментов связана отчасти с уникальной макроструктурой этих полимеров. Сложность общей структуры белков можно оценить на примере фермента рибоиуклеазы (рис. 25-12). В то время как вторичная структура белков определяется только водородными связями, многочисленные изгибы полипептидной цепи, придающие глобулярным белкам третичную структуру, зависят не только от пептидных связей и водородных связей между амидными группами, но и от других типов связей, а именно а) дисульфидных связей в цистине б) ионных связей, в которых участвуют дополнительные аминогруппы или карбоксильные группы в) водородных связей и г) гидрофобных взаимодействий (рис. 25-13). [c.410]

    И. продуцируются В-лимфоцитами и находятся либо в своб. виде в крови и нек-рых др жидкостях организма, либо в виде рецепторов на поверхностных мембранах клеток. Семейство И у высших позвоночных включает в себя неск. классов у человека их известно пять (О, М, А, О, Е). Классы И. делятся на подклассы. Молекулы И. симметричны. Они построены из легких (ок. 220 аминокислотных остатков) и тяжелых (450-600 аминокислотных остатков) полипептидных цепей (соотв. Ь- и Н-цепи), скрепленных дисульфидными связями и нековатентными взаимодействиями (см., напр., на рис. 1 схему строения IgG). В антителах человека обнаружено два вида легких цепей (гс и X) и пять видов тяжелых цепей (у, л, а, 8 и е), отличающихся аминокислотной последовательностью При обозначении И. в ниж. индексах греческих букв цифры показывают, сколько цепей содержится в молекуле. Тяжелые цепи, характерные для каждого из классов и подклассов И, содержат по одному или более олигосахаридному фрагменту. [c.216]

    Девять параллельно расположенных протофибрилл обвивают кольцевыми витками две другие протофибриллы, образуя микрофибриллу (диаметр 8 нм), с периодичностью 20 км. Пучок микрофибрилл, окруженный аморфным матриксом, состоящим из глобулярных белков с высоким содержанием дисульфидных связей, образует макрофибриллу (диаметр 200 нм), к-рая заполняет веретенообразную клетку, ориентированную вдоль оси волокиа. Разрыв дисульфидных связей между соседними а-спиральными участками (напр., при нагр. или действии восстановителей) приводит к диссоциации а-К. на отдельные полипептидные цепи. При растяжении протофибриллы переходят в неустойчивую для о-К. млекопитающих Зчггруктуру (при этом длина их может увеличиться в 2 раза). Роговые покровы пресмыкающихся и птиц образованы а-К., включающими участки -структуры и неупорядоченные области. [c.372]

    K. отличаются от а-К. отсутствием поперечных дисульфидных связей между соседними полипептидными цепями. Последние обычно имеют антипараллельную ориентацию (см. Белки), к-рая стабилизируется водородными связями и гидрофобными взаимодействиями. Группы R аминокислотных остатков имеют сравнительно небольшие размеры. -K. не раств. в воде, устойчивы к действию орг. р-рителей, разб. к-т и щелочей их волокна более гибки, чем у а-К., но в отличие от последних не эластичны. [c.372]

    Полипептидная цепь а-субъединицы состоит из 90-96 аминокислотных остатков и содержит 5 внутрицепочечных дисульфидных связёй, р субъединица состоит из 112-113 аминокислотных остатков И содержит 6 дисульфидных связей. [c.589]

    Гормон инсулин — это небольшой белок, состоящ,ий нз двух полипептидных цепей (обозначаемых латинскими буквами А и В), которые связаны друг с другом дисульфидными мостиками (рис. 4-13, Л). На рис. 4-13,5 схематически изображена структура этого белка согласно рентгеноструктурным данным представлены только остовы полипептидных цепей и несколько боковых групп [54, 55]. На этом рисунке В-цепъ расположена за А-цепью. Начиная от N-кoнцeвoгo фенилаланина- , пептидная цепь делает плавный поворот, затем примерно в центре молекулы образует три а-спиральных витка, и наконец после крутого разворота направляется в верхний левый угол рисунка, обра- [c.291]

    Расщепление полипептидных цепей, содержащих дисульфидные мостики, обычно приводит к сложной смеси низших пептидов. При реконструкции полипептидной цепи установление исходного порядка дисульфидных связей — довольно трудная задача. Один из путей ее решения дает диагональный электрофорез по Хартли, при котором пептиды после ферментативного гидролиза сначала разделяют электрофоретически на полосе бумаги. [c.365]


Смотреть страницы где упоминается термин Полипептидная цепь дисульфидные связи: [c.219]    [c.651]    [c.433]    [c.253]    [c.372]    [c.596]    [c.618]    [c.263]    [c.97]    [c.396]   
Молекулярная генетика (1974) -- [ c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Полипептидные цепи



© 2025 chem21.info Реклама на сайте