Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластификаторы соединений

    В качестве пластификаторов могут применяться органические соединения самых различных классов. Однако наибольшее промышленное применение в качестве пластификаторов полимеров нашли сложные эфиры — производные органических кислот (диэфирные пластификаторы) и ортофосфорной кислоты (фосфорсодержащие пластификаторы), а также сложные полиэфиры (полиэфирные пластификаторы). Объем промышленного производства диэфирных пластификаторов (соединений с двумя сложноэфирными группами в молекуле) составляет 85—90% от общего объема их производства. [c.5]


    Способность к растворению пленкообразующих. Пластификаторы могут желатинировать (растворять) или не желатинировать (не растворять) пленкообразующие. Подавляющее большинство используемых в качестве пластификаторов соединений относятся к группе желатинирующих. Они подобно растворителям способны проникать между макромолекулами пленкообразующего, ослабляя его межмолекулярные связи. [c.476]

    Группа ХЖ — хорошо желатинирующие пластификаторы. Соединения, в которых в течение нескольких часов полимер растворяется до гомогенного прозрачного раствора. Они совмещаются с полимером в любых соотношениях. [c.28]

    Группа Ж — желатинирующие пластификаторы. Соединения с меньшей растворяющей способностью. Образуются мутные и не полностью гомогенные растворы.. [c.28]

    Карбонильная группа и сама может входить в состав кольца, образуя соединения, которые называются циклическими кетонами. Самый известный из них — камфора, в" молекуле которой карбонильная группа представляет собой часть шестичленного кольца. Камфора — важный пластификатор. Поэтому изделия из пластиков, например расчески, нередко пахнут камфорой. [c.128]

    При рафинировании растворителем из сырого масла экстрагируются ароматические и нафтеновые углеводороды, смолы и асфаль-ты в количествах, зависящих от свойств растворителя и условий экстракции. Исходное масло (сырец) делится на две части разного химического характера рафинат, содержащий парафины (основной продукт процесса), и экстракт, содержащий остальные углеводороды и имеющий свою ценную область применения, например в качестве пластификатора. Методы экстрагирования обеспечивают полное использование исходного масла, в то время как образующиеся при подкислении кислые соединения являются только отбросом, трудным для использования, и чаще всего сжигаются на месте. [c.380]

    Пластмассы могут состоять и целиком из высокомолекулярных соединений, но большей частью применяются различные композиции, содержащие наряду с полимерами также наполнители, пластифицирующие вещества, красители и пр. (Влияние пластификаторов на свойства полимеров было рассмотрено в 240). [c.596]

    Большая ценность соединений, получаемых окислением (спиртов, альдегидов, кетонов, карбоновых кислот и нх ангидридов, а-оксидов, нитрилов н др.) и являющихся промежуточными продуктами органического синтеза, растворителями, мономерами н исходными веществами для производства полимерных материалов, пластификаторов и т. д. [c.351]

    Высокомолекулярное соединение — важнейшая составная часть, скрепляющая все компоненты в одно монолитное целое и придающая смеси (композиции) пластичность, способность формоваться, а также электроизоляционные, антикоррозионные и другие важнейшие свойства. Для этого используются кроме синтетических полимеров эфиры целлюлозы, белковые вещества, асфальты и пеки. По составу пластмассы можно разделить на нена-полненные, представляющие собой чистые или с очень незначительными добавками полимеры, и наполненные пластики — смеси, содержащие наполнители, пластификаторы, красители, стабилизаторы, отвердители и другие добавки, равномерно распределенные в связующем — смоле. [c.213]


    Производство эфиров четвертой группы относится к самым многотоннажным процессам этерификации. Нелетучие иры фталевой кислоты и спиртов i— j, широко используются в качестве пластификаторов для изготовления различных пластических масс. Эти соединения получают в большинстве промышленно развитых стран, и их годовое производство составляет приблизительно 1,5 млн. т. Наиболее распространенными продуктами являются фталевые эфиры спиртов g — ди-2-этилгексилфталат и диизооктилфталат. Важное значение имеет также производство диметилтерефталата — промежуточного продукта при получении полиэфирных волокон. [c.241]

    К целевым продуктам ООС относятся синтетическое жидкое топливо, смазочные масла, растворители и экстрагенты, мономеры, пластификаторы полимерных материалов, пестициды, средства защиты растений и другие. В качестве полупродуктов ООС используются, как правило, простейшие представители гомологических рядов соответствующих соединений углеводородов (этилен, пропилен, бензол), галогензамещенных (дихлорэтан, винилхлорид), спиртов (метанол, этанол), альдегидов и кетонов (ацетальдегид, ацетон), органических кислот (уксусная кислота) и т.д. [c.236]

    Внешняя пластификация может быть физической и механической. При физической пластификации в полимер вводятся пластификаторы — низкомолекулярные твердые или жидкие органические соединения с высокой температурой кипения и низким давлением пара. Пластификаторы экранируют и сольватируют функциональные группы в звеньях полимера и снижают потенциальный барьер внутреннего вращения макромолекул, что приводит к увеличению гибкости цепей и снижению температуры стеклования. Понижение температуры стеклования пропорционально количеству молей пластификатора, удерживаемых полимером  [c.379]

    Основным фактором, влияющим на продолжительность пропитки в сквозном капилляре, является вязкость пропитывающего вещества. Если жидкость вязкостью 90 Па-с заполнит поверхностные впадины глубиной /=10 см за 5 мин, то сырая резиновая смесь заполнит их только за несколько часов. Более вязкий продукт проникнуть в поры не сможет. При повышении температуры вязкость жидкости понижается, что способствует формированию адгезионного соединения, вследствие возрастания истинной площади контакта фаз. Такой же эффект дают механические воздействия, давление и добавление в систему растворителей, пластификаторов и ПАВ. [c.77]

    Смесь таких полимеров представляет собой хороший антиокислитель для масел и эффективный пластификатор для высокомолекулярных соединений. В качестве добавки к моторным топливам для улучшения процесса сгорания предложен три-(тиенил-2)-силан [98]  [c.70]

    Рафинат-2 в отличие от экстрактов селективной очистки не содержит смолистых веществ и представляет собой высококонцентрированные ароматические углеводороды и их производные, в том числе сераароматические соединения. Последние используют в качестве наполнителей и пластификаторов при производстве резины, теплоносителей, газостойких конденсаторных масел, а также компонентов при получении присадок. [c.363]

    При этерификации 1-этил масля ной кислотой триэтиленгликоля также получают соединение, используемое в качестве пластификатора. [c.341]

    Аноды выполняют в виде пластин из листового магния или его сплава. Катоды представляют собой медную сетку (или фольгу) с нанесенной на нее пастой из хлористой меди и связующего (раствор полистирола в толуоле с добавлением пластификатора). Катод и анод разделены диафрагмой из бумаги или другого материала, хорошо впитывающего воду. При сборке батарей магний и медные электроды соседних элементов разделяют изолирующей поливинилхлоридной пленкой. Через пленки элементы прошивают проволокой, для образования последовательного соединения. Перед использованием элементы заливают водой или на несколько минут погружают в воду. [c.41]

    Высшие парафины ( ia — С44) находят применение для производства ВЫСШИХ жирных кислот (ВЖК), синтетических жиров, смазочных масел, пластификаторов, непредельных соединений, используемых для получения высокомолекулярных веществ, ПАВ [c.59]

    Производные меркаптанов, такие как Ы-(трихлорметилтио)-фтали-мид, применяют в поливинилхлоридных покрытиях (подкладка для обуви, обивка стен, тентов) и пленках, идущих на изготовление занавесей для дуща, обивки сидений и т. д. Соединения четвертичных аммониевых оснований в концентрации 2—4% от веса пластификатора используют также для поливинилхлоридных пленок и покрытий. Типичными представителями ртутных соединений, применяемых в качестве фунгицидов, являются ацетат фенилртути, олеат фенилртути и др. Их используют в защитных покрытиях на основе акриловых и метакриловых смол. Соединения мышьяка являются отличными фунгицидами, однако они очень токсичны.. Их применяют в концентрации 3—5% от веса пленки, в основном поливинилхлоридной. При этом они одновременно служат стабилизаторами и пластификаторами. Соединения меди используют для предотвращения образования плесени в тканях, покрытых поливинилхлоридом, электроизоляции, трубопроводах и др. Так, пентахлорфено-лят меди применяют для защиты покрытой полиэтиленом бумаги, которая идет для упаковки. Основными направлениями научных исследований в этой области является разработка более эффективных и менее токсичных фунгицидов для пластмасс. [c.291]


    Смолы хорошо совмещаются с такими наиболее широко применяемыми в качестве пластификаторов соединениями, как дибутилфталат и трикрезилфосфат для хемостойких покрытий в ка- [c.180]

    В то время как химия каменноугольной смолы базируется на ограниченных сырьевых ресурсах таких соеднненкн, как ароматические углеводороды — бензол, толуол, нафталин и антрацен, фенол, крезол и т. д., промышленность алифатических продуктов располагает практически неограниченными ресурсами углеводородного сырья. Сырьевые ресурсы коксобензольной промышленности ограничиваются каменноугольной смолой они значительно меньше, чем ресурсы промышленности алифатических соединений, включающие нефть и продукты синтеза Фишера — Тропша. Поэтому промышленная переработка алифатических углеводородов уже достигла в настоящее время громадных масштабов. Производство специальных бензинов, растворителей, мягчителей, пластификаторов, пластмасс, синтетических моющих средств, вспомогательных материалов для текстильной промышленности, эмульгаторов и других продуктов в количественном и ценностном выражениях уже значительно превысило продукцию коксобензольной промышленности и приближается к соответствующим показателям основной неорганической химической промышленности. [c.10]

    Целью других технологических процессов экстракции является получение экстракта с высоким содержанием ароматических соединений. В этих процессах продукт крекинга или риформинга нефти обычно экстрагируется растворителем для получеш1Я бензола, толуола, ксилолов, их смесей или высокомолекулярных ароматических углеводородов, применяемых в качестве растворителей, пластификаторов, компонентов авиационного бензина и исходных продуктов для сульфирования и производства воднорастворимых детергентов. [c.192]

    Эпихлоргидриновые каучуки обладают комплексом свойств, делающих их весьма ценным материалом для промышленного использования. Одно из отличительных качеств этих каучуков — их маслобензонефтестойкость [42]. Маслостойкость гомополимера ЭХГ и сополимера ЭХГ и ОЭ выше, чем хлоропренового, бутадиен-нитрильного и акрилатного каучуков. Оба эпихлоргидриновых каучука, являясь насыщенными соединениями, обладают более высокой озоностойкостью, чем хлоропреновый и бутадиен-нитрильный каучук. Газопроницаемость эпихлоргидриновых каучуков ниже, чем бутилкаучука [3, 36, 37] и бутадиен-нитрильного каучука [36]. Особый интерес представляет сочетание высокой маслобензостойкости с удовлетворительной морозостойкостью (—40—45 °С) у сополимера ЭХГ и ОЭ, который в этом отношении значительно превосходит бутадиен-нитрильный и акрилатный каучуки. Введение в сополимер пластификатора позволяет понизить температуру, при которой еще сохраняется эластичность, до —62 С [43]. Эти свойства дают возможность применять сополимер для изготовления деталей, используемых в нефтяной промышленности, в частности для шлангов, работающих в условиях севера, а также для деталей автомобилей и самолетов. Хлорсодержащие группы придают гомополимеру ЭХГ огнестойкость [3], а насыщенность увеличивает стабильность эластомеров [37]. [c.581]

    Промышленный ПАВ ДС-РАС — это вязкая хорошо растворяющаяся в воде масса от желтого до светло-коричневого цвета плотностью = = 1,16 с температурой застывания /=50 °С, которая в своем составе помимо основного вещества (45%) и растворителя имеет определенное количество несульфированных соединений (1 % ), сульфата натрия (5%) и карбоната натрия (3%). Обладает высокой пенообразующей и смачивающей способностью даже в морской воде, что стимулирует его широкое применение помимо нефтяной промышленности также в текстильной, горнорудной и строительной в качестве технических моющих средств, фло-тореагента и пластификатора бетонов и цементов. Аналогами реагента являются 51апу1 40 (Франция), Тепзепе Д40 (Бельгия), А1капо1 V.XN (США). [c.78]

    Развитие химической промышленности послевоенного периода характеризуется непрерывным увеличением объемов производства за счет ввода новых мощностей, а также расширения ассортимента продуктов основной химической промышленности. Наиболее быстрыми темпами развиваются производства продуктов органического синтеза — растворителей, пластификаторов, антидетонаторов, антисептиков, моющих средств, консервирующих препаратов, ядохимикатов, флотирующих реагентов и др. Расширилось производство анилипокрасочных, химико-фармацевтических, лакокрасочных и других продуктов. Возникла и развилась промышленность некоторых видов синтетических волокон, синтетических смол, кремнийорганических соединений, пластических масс, пленочных материалов, разных видов синтетического каучука. [c.10]

    Решение. Оксид этилена — один нз важнейших полупродуктов различных синтезов получения этиленгликоля. полигликолей, лаковых растворителей, пластификаторов, этаноламинов, эмульгирующих и моющих средств соединения, синтезируемые нз оксида этилена, находят применение в производстве синтетических волокон, каучуков и других продуктов. Применяют два метода получения оксида этилена  [c.13]

    На показатели процесса гидрогенизации, а также на состав и качество получающихся спиртов значительное влияние оказывают примеси в исходном сырье. В исходной фракции кислот или эфиров нежелательно присутствие кислот или эфиров большей либо меньшей молекулярной массы. Особенно ограничивается примесь кислот выше Си (в свободном и связанном виде) из-за сокращения срока службы катализатора. Свободные монокарбоновые кислоты с разветвленной углеродной цепочкой или их эфиры превращаются в спирты с той же ско-рсстью и селективностью, что и кислоты нормального строения. Однако наличие разветвленных соединений ухудшает потребительские свойства продуктов последующей переработки спиртов — пластификаторов и моющих средств. [c.28]

    Жидкостные электроды. В жидкостных ионселективных электродах возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения иона между жидкой и органической фазами. Ионная селективность достигается за счет различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны. В качестве электродноактивного соединения в жидкостных ионселективных электродах могут быть использованы хелаты металлов, ионные ассоциаты органических и металлосодержащих катионов ц анионов, комплексы с нейтральными переносчиками. Большое распространение получили пленочные пластифицированные электроды, выпускаемые промышленностью и имеющие соответствующую маркировку, например, ЭМ—СЮ4 01, ЭМ—НОз —01. Чувствительный элемент таких электродов состоит из электродноактивного компонента, поливинилхлорида и растворителя (пластификатора). В лабораторной практике используют аннонселективные электроды, для которых электродноактивным соел,инением являются соли четвертичных аммониевых оснований. [c.121]

    Если рассматривать сераорганические соединения с точки зрения сырья для нефтехимической промышленности, то бензинокеросиновые фракции нефтей будут служить в основном постав-ш иками сульфидов, которые могут быть использованы для получения селективных растворителей, поверхностно активных веществ, пластификаторов и др. [5]. Меркаптаны являются также ценным сырьем для нефтехимического синтеза. Они могут быть использованы для получения поверхностно активных веществ [6]. Природные меркаптаны, выкипающие в пределах 200—300°, являются регуляторами полимеризации дивинил-стирольных каучуков, не уступающих импортному третичному додецил-меркаптану 17,81. [c.15]

    В последнее время наблюдается расширение областей применения сераорганических соединений — сульфидов, сульфоксидов, сульфонов и др. Наряду с нахождением новых объектов экстракции и флотации сульфидами и сульфоксидами, открывается перспектива их использования в качестве пластификаторов и катализаторов в крупно-тоннажных процессах. Однако отсутствие надежных и экономически выгодных процессов выделения нефтяных сульфидов тормозят решение проблемы внедрения новых продуктов, в промышленность. [c.224]

    Может быть, в недалеком будущем удастся создать такие технологические схемы переработки, в которых возможно полное использование нефти как сырья и выпуск большого ассортимента товарных продуктов высокого качества не будет сопряжен с образованием на отдельных стадиях технологического процесса значительных количеств канцерогенно-активных веществ. Со временем высококонденсированные полициклические ароматические соединения, несомненно, приобретут свои, специальные области применения в качестве пластификаторов для термостойких полимеров, в качестве антираковых [c.297]

    Полимерными материалами (ПМ) называются одно- или многокомпонентные системы, основу которых (матрицу) составляют высокомолекулярные соединения или полимеры. Состав ПМ весьма разнообразен и колеблется от почти индивидуальных полимеров до весьма сложных систем, включающих разнообразные компоненты, регулирующие технологические и эксплуатационные свойства материала. К подобным компонентам относятся различные химически инертные или активные вещества растворители, пластификаторы, загустители, красители, антипирены, антиоксиданты, термо- и светостабилизато-ры, антирады, структуро- и порообразователи. Они получили название наполнителей. Поэтому большинство ПМ можно рассматривать как наполненные полимеры. [c.369]

    Одно из наиболее перспективных направлений применения процесса карбамидной депарафинизации — получение товарных нефтяных парафинов различных сортов, дальнейшее использование и переработка которых могут осуществляться по нескольким направлениям. В начале промышленного внедрения процесса карбамидной депарафинизации выделяемый мягкий парафин использовали в качестве сырья для термического крекинга. Несколько более квалифицированным можно считать использование его в качестве компонентов топлив для реактивных двигателей — когда после компаундирования выдерживаются требования по температурам застывания, помутнения и т. д. Наиболее правильно использовать мягкие парафины в нефтехимических производствах. Например, мягкие парафины после соответствующей очистки можно окислять до жирных кислот или жирных спиртов, крекировать или дегидрировать с получением непредельных соединений, сульфохлорировать с получением моющих веществ типа алкилсульфонатов, хлорировать с получением присадок к смазочным маслам, пластификаторов, средств пожаротушения и т. д. На основе мягких парафинов можно производить различные растворители без запаха, применяемые при приготовлении некоторых лаков, красок и защитных покрытий, а также в фармацевтической и парфюмерной промышленности. Можно также использовать мягкие парафины при производстве инсектицидов, не имеющих запаха, для сельского хозяйства и особенно для бытовых нужд, при изготовлении некоторых типографских красок горячей сушки и т. д. Однако шире всего парафины будут применяться при производстве синтетических жирных кислот и синтетических жирных спиртов, а также при производстве белково-витаминных концентратов. Целесообразность производства парафина различных сортов (в том числе мягкого) на базе существующих нефтеперерабатывающих заводов с последующей переработкой этих парафинов освещается в ряде работ [204, 205 и др.]. [c.131]

    На АО Ново-Уфимский нефтеперерабатывающий завод" Башкортостана проведены исследования по переработке парафиново-смолистых соединений из резервуаров туймазинских и арланских нефтей. В результате разработана технология переработки парафино-смолистых отложений с получением нефтяного мягчителя для резиновых смесей на основе карбоцеп-ного каучука. Парафино-смолистые отложения обезвоживают с удалением механических примесей, из них отгоняются мягкие углеводороды и путем окисления, с использованием ионообразующих добавок, получают мягчи-тель резины. Опробование мягчителя резины взамен битума нефтяного высокоплавкого мягчителя (серийного пластификатора) проводили в произ- [c.165]

    Сульфонаты формальдегидных смол некоторых ароматических соединений - нафталина, антрацена, меламина и др., являются хороши-ш пластификаторами (сулерпластификаторами) бетонных смесей. [c.5]

    Области использования ди-, три- и полиэтиленгликолей в существенной мере перекрываются. Эти соединения используются как селективные экстрагенты ароматических углеводородов из продуктов каталитического риформинга, осушители газов, смазочные масла, гидравлические жидкости, пластификаторы, растворители. [c.97]

    Поливиниловый спирт относится к сравнительно небольшой группе синтетических полимерных соединений, хорошо растворимых в воде, гликолях, глицерине и в то же время обладаюш,их высокой стойкостью к действию большинства универсальных органических растворителей. Особенно ценна высокая масло-, бензо- и керосиностойкость поливинилового спирта, удачно сочетающаяся с высокой упругостью пластифицированного поли-.мера (пластификаторы—глицерин или гликоли) и со способностью его образовывать бесцветные прозрачные, светостойкие пленки и нити, легко формоваться в изделия методом литья под давлением. Пленки и изделия из поливинилового спирта отличаются высокой поверхностной твердостью и низкой хладотекучестью в нагруженном состоянии. Несмотря на присутствие пластификатора в эластичных пленках, они обладают хорошей прочностью, особенно при растяжении ( 600 кг1смР ) и истирании, превышающей прочность резин. Газонепроницаемость пленок из поливинилового спирта в 15—20 раз (в зависимости от степени пластифицирования) превышает газонепроницаемость вулканизованной пленки натурального каучука. Такая прекрасная газонепроницаемость и высокая температура стеклования поливинилового спирта обусловлены возникновением водородных связей между звеньями соседних макромолекул  [c.284]

    Из производных акрклонитрила наибольший интерес ввиду проявляемых свойств, доступности исходных веществ, удобства в обращении представляют алкокси- и аминонитрилы. Многие из этих соединений запатентованы как пластификаторы, инсектициды или полупродукты для синтеза смачивателей и эмульгаторов. Некоторые аминопропионитрилы ( напр. -диэтиламинопропионитри ) служат для получения ряда физиологически активных лекарственных препаратов [I]. [c.57]

    ПАВ, образующие гелеобразную структуру в адсорбционном" слое и в растворе, относятся к третьей группе. Такие вещества предотвращают коагуляцию частиц, стабилизируют дисперсную фазу в дисперсионной среде, поэтому их называют стаб илиз а-торами. Механизм действия сильных стабилизаторов состоит в том, что, кроме возникновения структурно-механического барьера для сближения частиц, важное условие стабилизации состоит в том, чтобы наружная поверхность такой оболочки была гидрофильной и чтобы не могло произойти агрегирования вследствие соприкосновения наружных поверхностей. Стабилизаторами могут быть сравнительно слабые ПАВ, так как даже при слабой адсорбции они могут образовывать сильно структурированные защитные оболочки. К числу ПАВ, обычно применяемых в качестве стабилизаторов, относятся гликозиды (сапонин), полисахариды, высокомолекулярные соединения типа белков. Стабилизаторы не только препятствуют агрегированию частиц, но и предотвращают развитие коагуляционных структур, блокируя путем адсорбции места сцепления частиц и препятствуя тем самым их сближению. Поэтому стабилизаторы суспензий являются также адсорбционными пластификаторами. Последние нашли очень широкое применение в гидротехническом строительстве, керамическом производстве, сооружении асфальтовых дорог, инженерной геологии, сельском хозяйстве с целью улучшения структуры почвы и др. [c.35]


Смотреть страницы где упоминается термин Пластификаторы соединений: [c.452]    [c.143]    [c.231]    [c.125]    [c.315]    [c.71]    [c.497]    [c.122]    [c.9]    [c.68]   
Синтезы и реакции фурановых веществ (1960) -- [ c.22 , c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Пластификаторы



© 2025 chem21.info Реклама на сайте