Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прочность энергетическая

    При одностороннем прессовании уплотнение достигается за счет перемещения только верхнего пуансона. Нижний пуансон при этом выполняет функции дна формы, и его приводят в движение лишь для выталкивания таблетки после прессования. Усилие прессования (Рв) превышает силу давления на нижний пуансон (рн) на величину сил трения таблетки о стенки матрицы. Удельное давленпе на верхнюю часть таблетки (дв) на 15—20% больше, чем на нижнюю, а боковое давление (< б. д) переменно по высоте и уменьшается сверху вниз. Соответственно уменьшается и прочность таблетки. При двухстороннем прессовании оба пуансона движутся одновременно навстречу друг другу, т. е. рв = р и дв = < п. Плотность и прочность таблетки незначительно понижается в середине. Для получения достаточной прочности таблетки необходимые усилия при двухстороннем прессовании значительно ниже, чем при одностороннем. Это позволяет резко уменьшить энергетические затраты и металлоемкость таблеточной машины. При применении плавающей матрицы достигается двухстороннее прессование, хотя уплотнение [c.270]


    В силовом поле металла происходит диссоциация молекул, наиболее активных в энергетическом отношении и обладающих повышенным по сравнению с остальными запасом энергии. При этом распад молекул осуществляется по наименее прочным связям. В данном случае прогнозирование реакционной способности соединений возможно по энергии (прочности) связи между активным элементом и органическим радикалом. Чем меньше энергия связи, тем выше противозадирные свойства соединения. Например, сопоставлением энергии связи показаны преимущества дисульфидов по сравнению с сульфидами в условиях высоких контактных нагрузок, установлено влияние органического радикала сульфидов и дисульфидов на их противозадирные свойства (табл. 5.2). [c.259]

    Итак, материал по гибридизации электронных орбиталей атомов при образовании химических связей подтверждает исключи тельную плодотворность и важность самой идеи гибридизации в МВС. Прежде всего гибридизацией определяется химическое а кристаллохимическое строение веществ. А свойства веществ в первую очередь зависят от их химического и кристаллохимического строения. Кроме того, гибридизация делает тождественными непо деленные электронные пары атомов. Наконец, гибридные связи обладают большей прочностью (энергетически более выгодны) по сравнению со связями, образованными чистыми электронными облаками. Относительная прочность гибридных связей (прочность 5-связей принята за единицу) приведена ниже  [c.110]

    Толщина стенки по 4-й теории прочности (энергетической), обеспечивающей более экономное использование материала, определяется по следующим формулам  [c.21]

    Имеются попытки использовать при анализе адгезионной прочности энергетический подход, развитый в свое время Гриффитом для анализа хрупкого разрушения твердых тел. В этом случае энергия разрушения приравнивается к энергии, необходимой для образования новых поверхностей, и зависит от поверхностной энергии [c.25]

    Из рис. XIV-103 вытекает, что степень проявления транс-влияния должна несколько зависеть и от природы цис-лигандов (А) чем прочнее они связаны с комплексообразователем, тем более затруднено смещение его атомного остова и, следовательно, слабее выражено транс-влияние. Следует подчеркнуть, что обусловленное им изменение энергии комплексной связи во много раз меньше ее общей прочности. Энергетическое соотношение здесь примерно такое же, как при расщеплении уровней центрального атома полями лигандов (доп, 101). [c.457]

    Наряду с расчетными формулами (20) и (21), полученными по третьей теории прочности, для расчета тонкостенных цилиндров из пластичных материалов применяют расчетные формулы, полученные по четвертой теории прочности. Четвертая, так называемая энергетическая, теория прочности основана на предположении, что момент наступления опасного состояния характеризуется величиной удельной потенциальной энергии, накопленной в стенке аппарата. При определении удельной энергии учитывают все три главных наиряжения. [c.49]


    Формулу для расчета по энергетической теории прочности можно получить, подставляя значения главных напряжений по формулам (34), (35) и (36) п уравнение (22). Тогда после проведения преобразований получим для любой точки на расстоянии Я от оси величину эквивалентного напряжения [c.59]

    Можно объяснить изложенные выше экспериментальные данные, исходя из современных представлений о зависимости между физическими свойствами и химическим строением органических соединений, а также из данных о прочности связей углерода с углеродом, водородом, кислородом и азотом (86, 146, 149, 208, 212]. Каждому температурному пределу соответствует определенное количество разложившихся сернистых соединений в коксе, которое (находится в определенной зависимости от энергетических состояний внутри его молекул. [c.156]

    Цирконий почти не захватывает медленные (тепловые) нейтроны. Это его свойство в сочетании с высокой стойкостью против коррозии и механической прочностью прн повышенных температурах делает цирконий и сплавы на его основе одним из главных конструкционных материалов для энергетических атомных реакторов. К важнейшим сплавам циркония относятся ц и р к а л  [c.650]

    И наконец, по четвертой (энергетической) теории прочности [c.99]

    Независимо от того, какой критерий положен в основу оценки условия неустойчивости моделей с трещинами, общим ограничением их применимости для оценки прочности деталей и конструкций является уровень средних напряжений (в нетто-сечении), который не должен превышать предела текучести металла. В противном случае асимптотическая оценка напряженно-деформационного состояния будет не справедливой. Однако при этом сами критерии (Кс, 5с, 1с, Тт) не теряют физического смысла и, естественно, могут быть использованы для оценки качества материала любой прочности и пластичности. Приведенные данные свидетельствуют о том, что в случае маломасштабной текучести в области трещины силовые, деформационные и энергетические критерии дают практически одинаковый результат. Более перспективным из отмеченных критериев следует считать параметр Л, поскольку он включает в себя компоненты напряжений и деформаций и его можно распространить на случай вязкого разрушения. [c.126]

    Расчет на прочность рекомендуется производить по энергетической теории. [c.414]

    Проверку на прочность выполняют по эквивалентному напряжению, определяемому на основании 4-й (энергетической) теории прочности  [c.179]

    Последнее существенно заметно при тонком измельчении, когда в одной машине достигается высокая степень измельчения, доходящая до 100 и выше. При крупном, среднем и мелком измельчении материалов средней прочности, когда степень измельчения составляет 3—4, расход энергии колеблется от 0,4 до 1 кВт-ч/т при тонком помоле расход энергии достигает 30 кВт-ч/т, а иногда и больше. Часто высокий удельный расход энергии при тонком измельчении объясняют только изменением прочности или размалываемости материала. Чем мельче частицы, тем меньше в материале внутренних дефектов, тем они прочнее и, следовательно, на их измельчение требуются большие затраты энергии. Это объяснение справедливое, но неисчерпывающее и в некотором смысле консервативное, так как оно не только обосновывает неизбежность высоких энергетических затрат при тонком измельчении, но и разоружает исследователя, ищущего пути к снижению этих затрат. [c.34]

    Из формулы (127) следует, что а. рох. Согласно энергетической гипотезе прочности эквивалентное напряжение [c.147]

    На основании полученных формул можно сделать заключение, что контактные напряжения не являются линейной функцией нагрузки. С возрастанием последней они незначительно увеличиваются и в основном зависят от упругих свойств материалов. Это обусловлено увеличением размеров площадки контакта с возрастанием нагрузки. Применяя энергетическую теорию прочности, можно получить эквивалентное напряжение в опасной точке  [c.243]

    Эквивалентное напряжение в алюминиевом поршне по энергетической гипотезе прочности [c.384]

    Тип боковых цепей, радикалов, прочность их связей и отношение неупорядоченной части к упорядоченной в направлении Ьа обусловливает склонность углерода к химическим реакциям, а размер и упорядоченность кристаллитов углерода перпендикулярно к этому направлению (по Ьс) определяет его физические свойства (адсорбционную способность, энергетическую неоднородность поверхности, внутреннюю поверхность, пористость, тепло- и электропроводность и др.). По мере протекания химических реакций, сопровождающихся увеличением упорядочения по Ьа, непрерывно изменяются физико-химические свойства углерода, которые, в свою очередь, влияют на склонность и характер деструктивных процессов, протекающих на поверхностных слоях углерода. [c.53]

    Пористая структура и размеры зерна катализатора через, диффузионные явления, прежде всего влияют на активность и избирательность катализатора. Эти вопросы рассматривались в главе III. Однако структура катализатора влияет не только на эти свойства. Она определяет в значительной мере механическую прочность катализатора и тем влияет на егодолговечность. Скорость зауглероживания катализатора и скорость регенерации, также зависят от структуры пор катализатора. Форма и размер зерен определяют и - гидравлическое сопротивление слоя катализатора и следовательно энергетические затраты на транспорт потока. В отношении активности и селективности катализатора и сопротивления слоя можно в более или менее строгой форме применять теоретически обоснованные методы оптимизации структуры и формы, в отношении же остальных свойств, на которые влияют структура и форма, приходится применять названные выше методы эмпирической оптимизации или расчетного сравнения отдельных вариантов. [c.189]


    Под действием внешних факторов в результате диссоциации старых и образования новых межмолекулярных связей происходят взаимосогласованные изменения размеров составных ча стей сложной структурной единицы сольватного слоя и надмолекулярной структуры. Протекающие на молекулярном и надмолекулярном уровне изменения определяют новое энергетическое состояние и обуславливают соответствующие изменения макроскопических физико-химических свойств нефтяных дисперсных систем таких, как агрегативная устойчивость, структурномеханические характеристики. Для решения ряда практических задач технологии переработки нефтяных дисперсных систем необходимо действием различных факторов целенаправленно влиять на соотношение размеров составных частей сложной структурной единицы, Принимая за скорость формирования (разрушения) слоев отношение бесконечно малого приращения толщины слоя к соответствующему приращению растворяющей силы среды и используя модель последовательных реакций, в работе [112] получили систему кинетических уравнений. С их помощью построены кривые изменения радиуса надмолекулярной структуры Я и толщины сольватного слоя Я, которым соответствуют кривые изменения агрегативной устойчивости и структурно-механической прочности нефтяных дисперсных систем (рис. 6). [c.40]

    Величина сопротивлений, определяемых двумя последними факторами при постоянной теш1ературе, зависит от градиента скорости сдвига. При малых скоростях сдвига в области, близкой к переходу через предел прочности, интенсивно разрушаются обломки структурного каркаса. При увеличении скорости деформацрш дальнейшее разрушение структурных элементов и, следовательно, энергетические затраты на такое разрушение уменьшаются. В результате разрушения обломков структурного каркаса и ориентации структурных элементов при увеличении скорости деформации снижаются также сопротивления, обусловливаемые стеснением потока. [c.273]

    Прп расчете по энергетической теории прочности тсмиерутур-иые напряжения суммируют с одинаковыми по направлению напряжениями от давления и результирующие напряжения подставляют в формулу (22). [c.62]

    Lno сравнению с исходной АО, что влечет за собой увеличение прочности связи. Соответственно разрыхляющая двухцентровая молекулярная орбиталь Ls является результатом вычитания атом-jflbix ls-орбиталей. Энергия электрона на разрыхляющей МО выше 1по сравнению с исходными АО, поэтому она энергетически менее / выгодна. [c.58]

    Анализ машинного технологического процесса ие исчерпывается получением исходных данных для структурного и параметрическо]-о синтеза машины. Исследование технологического процесса позволяет найти наивыгоднейшие параметры технологического режима (скорости, давления, температуры и т. д.), обеспечивающие его эффективность и высокое качество продукции, получить необходимые сведения для проведения энергетических расчетов, определить нагрузку на рабочие органы и звенья механизмов, что необходимо для их расчета на прочность, жесткость и усто11чивость, выбрать конструкцнопные материалы и правильно сконструировать рабочие органы машины. [c.10]

    Полезно связать энергии наблюдаемы.х с1 — -переходов с энергетическими уровнями, используемыми при описании октаэдрических комплексов с помощью метода молекулярных орбиталей (МО). На рис. 10.15 показана диаграмма МО для комплекса (л-связывание не учитывается). Разность энергий и составляет ЮОд. По мере увеличения прочности ст-связи металл - лиганд Е понижается, а Е увеличивается на ту же самую величину, в то время как Од возрастает. Если электроны. vJeтaллa образуют п-связи со свободными р- или -орбиталями лиганда, энергия уровня в комплексе снижается, а Од увеличивается. Электрон-электронные отталкивания электронов и несвязывающих электронов металла повышают энергию совокупности и понижают Д. Изложенные выще соображения были использованы при интерпретации спектров ацетилацетонатов некоторых переходных металлов [15, 16]. [c.97]

    НОЙ формы и др.). Таким образом, сопротивление деформированию носит устойчивый или неустойчивый характер. Устойчивое сопротивление деформированию обычно сопровождается с ростом внешней нагрузки (например, при нагружении монотонно возрастающей силой). Переход из устойчивого в неустойчивое состояние сопровождается снижением интенсивности роста или спадом внешней нагрузки и называется предельным состоянием, а параметры, соответствующие ему, - критическими (критическая сила, деформация, напряжение, энергия). Формы потери устойчивости сопротивления деформации разнообразны, например, переход металла из упругого в пластическое состояние, локализация деформаций (шейко-образование) при растяжении, потеря устойчивости первоначальной формы при действии напряжений сжатия и др. Разрушение нередко происходит при нормальных условиях эксплуатации конструкций, когда в целом металл испытывает макроупругие деформации. Такие разрушения, как правило, реализуются при наличии дефектов и конструктивных концентраторов. Последние вызывают локальные перенапряжения и образование микротрещин. Трещины в металле могут существовать и до эксплуатации конструкции, например, холодные и горячие трещины в сварном соединении. При рабочих нагрузках, вследствие действия временных факторов разрушения, происходит медленный, устойчивый рост исходных трещин и при определенных условиях наступает период неустойчивого (быстрого) распространения и окончательного разрушения. Определение критических параметров неустойчивости росту трещин является основной задачей механики разрушения. Критерии механики разрушения, как и феноменологические теории прочности, постулируются на основании какого-либо силового, деформационного или энергетического параметра К (рис.2.7). Условием неустойчивости тела с трещиной является КЖкр (быстрое распространение трещины). [c.76]

    Для обоснованного выбора коэффициентов запаса прочности необходимо знать нагрузки, соответствующие предельному состоянию. Такие сведения необходимы и при выполнении технологических операций производства труб и оборудования с целью расчета деформационных, силовых и энергетических характеристик маи1ин и установок для обработки. [c.97]

    Тонкие цилиндры под давлением в силу малости радиальных напряжений испытывают плоское напряженное состояние. Для них первая и третья теории прочности дают одинаковые результаты, а по энергетической теории 8 = л/з/2трГв. [c.99]

    Таким образом, электростатические представления указали в принципе причину образования комплексных соединений, позволили теоретически оценить их прочность и в первом приближении объяснить наблюдаемые координационные числа. Однако представление о комплексах как агрегатах, состоящих из недеформи-руемых заряженных сфер, является, конечно, очень грубой моделью и поэтому не может объяснить многих их особенностей. Так, электростатические представления не могут объяснить, почему ряд комплексов,с координационным числом 4 имеет плоское строение (комплексы Рс1+ , Р1+ и др,). Если пользоваться моделью заряженных шаров, тр энергетически наиболее выгодным является тетраэдрическое расположение четырех лигандов вокруг комплексообразователя. [c.120]

    Квантовомеханическое исследование процесса взаимодействия молекулы гзза с поверхностью кристалла показывает, что в зависимости от вида молекулы и кристаллической решетки такое взаимодействие может быть различным как по характеру образующейся связи и прочности ее, так и по изменению свойств молекулы в адсорбированном состоянии. В образовании связи могут принимать участие электроны или дырки кристаллической решетки ( 55). Связь может образоваться не только за счет имевшихся свободных валентностей поверхностных атомов, но и за счет валентностей, возникаюш,их при взаимодействии поверхностных атомов с молекулой газа. В хемосорбированном состоянии молекула может вновь оказаться в валентно насыщенном состоянии или перейти в состояние радикала или в ионо-радикальную форму. Во многих случаях за время пребывания молекулы в хемосорбированном состоянии может изменяться характер связи ее с поверхностью кристалла, состояние ее и энергия связи. Для полупроводниковых адсорбентов введение донорных или акцепторных примесей, вызывая изменение в соотношении энергетических уровней электронов в кристалле, может влиять ыа характер хемосорбционных процессов. Подобное же влияние могут оказывать и различные структурные дефекты поверхности. [c.371]

    Сущность каталитического действия Н+ в рассмотренных реакциях заключается в том, что электрофильный реагент Н+ имеет свободную (незанятую) орбиталь и избыточный положительный заряд. Свободный энергетический уровень Н+ может взаимодействовать с энергетическими уровнями несвязывающих орбиталей, а также с верхними заполненными молекулярными орбиталями кислорода. На свободную орбиталь Н+ смещается электронный заряд с несвязывающей или верхней заполненной орбитали кислорода. В результате возникает связь донорно-акцепторного типа между протоном и атомами кислорода. Распределение электронной плотности в молекуле изменяется. За счет понижения электронной плотности на связях — прочность их понижается, молекула поляризуется. [c.625]

    Кроме таких общих с другими нефтепродуктами характеристик, как вязкость, температуры застывания и вспышки, содержание воды и механических примесей, кор розионность, испаряемость и т. д., смазки обладают рядом специфических свойств, присущих только им эффективная вязкость — величина этого показателя характеризз ет зфовень и постоянство энергетических потерь в узле трения, т. е. устойчивость его работы предел прочности и термоупрочнение определяют способность смазки удерживаться на движущихся деталях, наклонных поверхностях, в негерметизированных узлах трения (предел прочности), а также сохранять свойства в процессе эксплуатации (термоупрочнение) пенетрация характеризует консистенцию (густоту) смазки тем-п атура каплепадения определяет верхний температурный предел работоспособности смазки, а склонность к сползанию — способность предотвращать разрывы пленки на вертикально закрепленных поверхностях, что особенно важно для консерва-ционных смазок коллоидная и механическая стабильность характеризуют постоянство состава и свойств смазки при хранении и эксплуатации. [c.468]

    Эти выводы теории А. А. Баландина ( принцип энергетического соответствия ) в общем виде подтверждаются многими примерами, однако применение теории для расчета энергий активации весьма ограничено отсутствием в большинстве случаев данных о прочности связей с катализатором. Во всяком случае слишком слабое (ЕСкх < С АВ + ( св) или слишком сильное (X Ркх > Сав + + Q D) взаимодействие с катализатором ведет к высокому значению энергии активации, и катализ не осуществляется. В нервом случае реагенты активируются катализатором в малой степени, а во втором происходит по существу реатоия с поверхностью катализатора с образованием прочных поверхностных соединений. [c.150]

    Эквивалентные напряжения при двухосном напряженном состоянии материала согласно энергетической теории можно определить по формуле Оэкв = у ( 1 — 01СТ2 + 02- Корпус колонны проверяют на прочность по условию [c.111]

    Будилов И.H., Гафаров Р.Х. Оценка текущего состояния, прочности и остаточного ресурса нефтехимического оборудования с учётом локальных дефектов // Материалы Второго научно-технического семинара Обеспечение промышленной безопасности производственных объектов топливно-энергетического комплекса Республики Башкортостан , Уфа.- 1999.-С.79-86, [c.97]

    Для эндотермических реакций наблюдается обратная картина исходные соединения обладают низкой энергией, а энергия активированного комплекса близка к энергии продуктов реакции (см. рис. 2.3). В таких реакциях длина разрывающейся связи в активированном комплексе значительно больше длины связи исходных соединений и скорость реакции очень чувствительна к природе и прочности разрывающейся свя-зи (например, в реакции дис-Рис. 2.3. Энергетические кривые, ил- социации молекул). В резуль-люстрирующие правило Хэммонда. / г  [c.28]

    Смазывающее действие масел проявляется в снижении сопротивлению контактирующих поверхностей тел иод действием нормальной нагрузки. Процесс смазывания характеризуется свойствами трущихся поверхностей и физико-химическими свойствами смазывающих материалов. Свойства трущихся поверхностей зависят от энергетической неоднородности поверхности, наличия на ней шероховатостей, удельной поверхности, температуры и других факторов. Все они влияют на взаимодействие смазочных материалов с твердой поверхностью, приводящее к образованию граничных слоев определенной толишны. Б. В. Дерягин с сотр. [227] показал, что силы притяже1шя между поверхностями твердых тел и жидкостей действуют на расстоянии 10 мкм и более. Граничный слой жидкости отличается весьма сильно от объемного по прочности, вязкости и другим свойствам, что позволило А. С. Ахматову [228] рассматривать их как квазитвердые тела. Толщина граничного слоя и его состав зависят от свойств трущихся поверхностей и масел. [c.212]

    Исследования советских ученых [72] показали, что теория Фукса — Кревелена приближенно верна только в частном случае при медленном нагреве топлива. На основании этих исследований была предложена теория параллельного первичного реагирования. Согласно этой теории при мгновенном (за доли секунды) нагревании угля в заданных условиях исходные многоатомные молекулы реагируют одновременно по ряду параллельно протекающих первичных реакций, в том числе ранее неизвестных, при которых в исходном топливе с разной скоростью разрываются различные по энергетической прочности межатомные связи. [c.69]


Смотреть страницы где упоминается термин Прочность энергетическая: [c.84]    [c.84]    [c.32]    [c.100]    [c.124]    [c.350]    [c.42]    [c.352]    [c.233]    [c.101]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.314 , c.361 , c.362 , c.367 ]




ПОИСК





Смотрите так же термины и статьи:

Расчет энергетической прочности ионной решетки



© 2025 chem21.info Реклама на сайте