Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стокс потоке

    Поступательный стоксов поток [c.191]

    Твердая частица Поступательный стоксов поток Интерполяция численных и аналитических результатов 1,4 [219] [c.192]

    Твердая частица Поступательный стоксов поток Конечноразностный численный метод (при Ре = 500) 4 [28] [c.192]

    Капля, пузырь Осесимметричный сдвиговый стоксов поток 2 1 [c.223]

    Капля, пузырь Поступательный стоксов поток 2,6 1,6 [c.223]

    Капля, пузырь Плоский сдвиговый стоксов поток 3,8 2,8 [c.223]

    Твердая частица Поступательный стоксов поток 3,4 2,4 [c.223]


    Рассмотрим плоскопараллельное стационарное течение несжимаемой жидкости, ограниченной динамически гладкой непроницаемой поверхностью, при отсутствии продольного градиента давления. Ось х направим по течению, а ось у — перпендикулярно граничной плоскости. Тогда уравнения, описывающие поведение флуктуаций скорости в турбулентном потоке, получаемые вычитанием уравнении Рейнольдса из полных уравнений Навье—Стокса, примут вид  [c.171]

    По мере роста Ке (большие диаметры шаров или скорости потока или малая кинематическая вязкость) -наблюдается постепенный переход от закона Стокса к так называемому закону сопротивления Ньютона [c.25]

    В пределе при Ке -> оо для каждого из шаров выполняется закон Стокса (II. 10). Взаимодействие шаров через поток умень- [c.30]

    Трудности математического характера, так как частные дифференциальные уравнения очень сложны по своей структуре. Например, уравнение Навье — Стокса для импульсного потока в своей полной форме [см. последнее уравнение системы (6-50)] не интегрируется. Следовательно, для его решения необходимо ввести упрощения. Как будет показано ниже, в качестве решения уравнения Навье — Стокса в простейшем случае можно получить хорошо известное из практики уравнение Гагена — Пуазейля. [c.81]

    Таким образом, становится понятным, почему важное значение приобретают методы, которые позволяют привести дифференциальные уравнения, описывающие процесс, к зависимостям безразмерных комплексов величин . Перед описанием этих методов остановимся на решении основного уравнения потока, т. е. уравнения Навье — Стокса, для простейшего случая. [c.81]

    Уравнение Навье — Стокса для импульсного потока может быть выражено таким методом с помощью трех критериев. Так как безразмерные комплексы образуются как частное от деления физических величин и число их конечно [3], то считают, что эти комплексы величин, которые описывают поток или элемент процесса, образуют конечную свободную абелеву группу (см. Дополнение). Зависимость между безразмерными комплексами обычно представляют в форме степенного многочлена. В случае уравнения Навье — Стокса для импульсного потока можно записать  [c.85]

    Уравнения гидродинамики реальных потоков обычно очень сложны (например, уравнения Навье-Стокса для однофазных потоков) или даже вообще не могут быть записаны в общем виде (например, для двухфазных потоков типа газ—жидкость ) из-за отсутствия возможности задания граничных условий на нестационарной поверхности раздела фаз. Поэтому на практике прн составлении математических описаний обычно используют приближенные представления о внутренней структуре потоков. С одной стороны, это облегчает постановку граничных условий для уравнений, а с другой— позволяет наметить определенные экспериментальные исследования, необходимые для нахождения параметров уравнений движения потоков. [c.56]


    Движение реальной несжимаемой жидкости описывается уравнением Навье- Стокса. Для потока / его можно записать следующим образом  [c.18]

    Баланс действующих в потоке сил выражается в случае движения идеальной жидкости уравнениями Эйлера, а в случае движения реальной жидкости — уравнениями Навье—Стокса. [c.276]

    Использование уравнения движения реальной жидкости совместно с уравнениями неразрывности позволяет решить основную задачу гидродинамики — определить поля скоростей, давление и плотность жидкости, движущейся под действием заданных внешних сил. Однако решение уравнений Навье—Стокса получено только для простейших случаев одно- и двухмерного потока. Кроме того, это уравнение ие описывает течение жидкости при турбулентном режиме. [c.276]

    Основные критерии гидродинамического подобия. Эти критерии можно получить из уравнения Навье — Стокса для стационарного потока вязкой несжимаемой жидкости в направлении пространственной координаты % [8, 91  [c.136]

    Основные критерии теплового подобия. При переносе тепла сохраняет силу и уравнение Навье — Стокса, т. е. тепловое подобие требует геометрического и гидродинамического подобия. Уравнения переноса тепла потоком в направлении оси при стационарном режиме имеют вид [8, 9]  [c.137]

    Эти критерии можно получить из уравнения Навье — Стокса для стационарного потока вязкой несжимаемой жидкости в направлении пространственной координаты 2 [14, 15]  [c.23]

    Работа экстракционной колонны существенно зависит от гидродинамических условий. Они определяют, в частности, скорости потока обеих фаз. Для сплошной фазы с напорным движением скорость можно подобрать в таких пределах, чтобы получить свободное движение диспергированной фазы. Скорость потока сплошной фазы вдоль колонны подвержена колебаниям вследствие присутствия капель. В сечениях, заполненных наибольшим количеством капель, эта скорость достигает максимума, а в сечениях с одной только сплошной фазой—минимума. Так как положение этих сечений постоянно подвергается изменениям, то скорость потока диспергированной фазы в определенном сечении колонны постоянно колеблется между максимальным и минимальным значением. Скорость диспергированной фазы [17, 18, 37, 47, 48,90, 123] относительно скорости сплошной фазы зависит исключительно от свойств обеих жидкостей и для соответственно малых капель может быть вычислена по закону Стокса  [c.301]

    Если показатель степени при числе Рейнольдса равен 1, то этому закону подчиняется ламинарное движение жидкостей в трубах и движение тел малых размеров в потоке жидкости (закон осаждения Стокса). [c.133]

    Для решения задачи с отрывом пограничного слоя от поверхности перегородок при возникновении за ними обратных течений и сосредоточенных вихрей целесообразно использовать известную схему решения задачи о суперкавитирующей наклонной плоской пластинке (режим обтекания, при котором вся тыльная часть соприкасается с каверной) или дуге в неограниченной жидкости под свободной поверхностью или в канале. При этом вводится ряд допущений, согласно которым рассматриваются плоские, потенциальные, установившиеся течения несжимаемой невесомой жидкости [64—66]. Анализ такой схемы суперкавитационного обтекания базируется на применении аппарата теории функций комплексного переменного и комплексного потенциала в отличие от непосредственного решения уравнений Навье—Стокса. Согласно упомянутой схеме, задача движения газового потока в канале с системой наклонных перегородок сводится к рассмотрению плоского течения идеальной жидкости, для которого справедливы условия [c.175]

    При течении газа в тесных каналах между элементами насадки существенную роль играют силы вязкости, что приводит к необходимости применения к процессу движения газа в насадке основных уравнений движения вязкой жидкости Навье—Стокса. Однако прямое интегрирование уравнений Навье—Стокса при столь сложных граничных условиях, какие обусловливает насадочная среда, оказывается невозможным. Поэтому запишем для потока газа уравнения Навье—Стокса в форме уравнений гидродинамики Эйлера, но к действительно существующей массовой силе X прибавим фиктивную массовую силу Х , которая учитывает эффект вязкого трения и называется фиктивной силой сопротивления Жуковского  [c.407]

    Задача стационарного обтекания сферы вязким несжимаемым ограниченным потоком при малых числах Рейнольдса (Не-нкО) впервые была рассмотрена Стоксом [1]. Уравнение движения вязкой несжимаемой жидкости, записанное в безразмерной форме, имеет вид [c.247]


    Граничными условиями к уравнению (3.1) являются условие прилипания на сфере и равномерность потока вдали от сферы. При Ке<1 Стокс, пренебрегая инерционными членами, получил следующее решение, записанное в сферической системе координат с началом в центре сферы и полярной осью в направлении у  [c.247]

    Капля, пузырь Осесимметричный сдвиговый стоксов поток Аналитический, ПДПС 0 [68] [c.192]

    Капля, пузырь Поступательный стоксов поток Аналитический, ПДПС 0,7 [101, 212, 292] [c.192]

    Капля, пузырь Плоский сдвиговый стоксов поток Аналитический, ПДПС 1,8 [147] [c.192]

    Движение жидкости плотностью р (кг/м ) со скоростью и (м/с) в промежутках между частицами зернистого слоя подчиняется основным законам гидродинамики— уравнениям Навье— Стокса [1, 2]. При этом жидкость и даже газ можно считать практически несжимаемыми (р = onst), поскольку скорости потоков в аппаратах малы по сравнению со скоростью выравнивания деформаций — скоростью звука. Особенности течения неньютоновских жидкостей в зернистом слое [3] изучены недостаточно и реологические свойства потока будем считать целиком определяющимися вязкостью j,[H/(m- )].  [c.21]

    Основой математического описания КГТС деталей машин (например,, абсолютно гладких цилиндров, показанных на рис. 5.5) служат дифференциальное уравнение движения жидкости Навье —Стокса и условие неразрывности установивши гося потока жидкости, следствием которых является известное уравнение Рейнольдса, относящееся к установившемуся плоскому потоку вязкой жидкости в узком клиновом зазоре между двумя плоскостями [c.235]

    Для исследования массо- и теплообмена в вертикальных дисперсных двухфазных системах необходимо вначале рассмотреть гвдродинамику движения одиночных частиц в потоке вязкой жидкости или газа. В разделе 1.1 приведены точные и приближенные решения уравнения Навье — Стокса в сплошной и дисперсной фазах для малых и промежуточных значений критерия Рейнольдса. [c.5]

    Значсння постоянных коэффициентов находятся из граничных условий. Для внешнего потока условие (1.24) сразу дает 02=0 j = = -0,5. При обтекании твердой сферы (задача Стокса) из условия (1.18) находим 2 =--0,25 02=0,75. [c.10]

    Приближенные решения уравнения Навье-Стокса для промежуточных значений критерия Рейнольдса. Решения Стокса и Адамара получены при значениях критериев Рейнольдса Кс1 и Кег, много меньших единицы Обтекание твердой сферы при малых, но конечных значениях Кез впервые исследовалось Уайтхедом (1889 г.), который применил к решению уравнений Навье - Стокса метод последовательных приближений, разлагая поле потока в ряд по степеням Ясз. Однако построенное Уайтхедом решение противоречило граничным условиям вдали от сферы. Второе приближение для скорости не удовлетворяло условиям равномерного потока на бесконечности, а более высокие приближения на бесконечности расходились. Таким образом, все члены разложения, кроме главного, не удовлетворяли граничным условиям. Этот парадокс, свойственный задачам обтекания тел конечных размеров, был назван парадоксом Уайтхеда. Его объяснение и правильное решение при малых значениях Кег было осуществлено в работе Озеена [1]. Озеен показал, [c.11]

    Вихрь Хи.пла обращает в нуль отдельно конвективные и вязкостные члены уравнений Навье Стокса и, следовательно, является точным решением этих уравнений, не зависящим от критерия Рейнольдса. Таким образом, при малых Кб2 влияние Ке, на поток отсутствует. Расчеты показали, что при Ке ЮО для фиксированных значений р и Кй изменение Ке, в диапазоне 1<СКе,<100 практически не влкяег на характеристики потока, В связи с этим в расчетах принималось Кс I --Кс2 = Ке  [c.20]

    Теоретические исследования силы сопротивления, действующей на твердую сферическую частицу, которая стационарно осаждается в дисперсной смеси и испытывает влияние окружаюншх частиц, начались ра-тами Смолуховского [22]. Как известно, точное решение этой задачи принципиально невозможно из-за необходимости удовлетворения граничных условий сразу на нескольких поверхностях. Поэтому Смолухов-ский предложил метод последовательных итераций, в котором краевую задачу можно бьшо решить в любом приближении, рассматривая каждый раз граничные условия только на одной из частиц. Этот метод получил название метода отражений и позволил решить целый ряд задач, связанных с гидродинамическим взаимодействием частиц друг с другом и со стенками канала [22]. Метод основан на линейности уравнений Стокса, описывающих установившееся течение вязкой жидкости, когда значение критерия Рейнольдса, рассчитанное по диаметру частицы, мало по сравнению с единицей. Решение задачи обтекания частицы в облаке, состоящем из N частиц, ищется в виде суммы основного возмущения, вносимогг) в поток произвольно выбранной (пробной) частицей, и последовательных, ,отражений этого возмущения от имеющихся в наличии поверхностей  [c.64]

    Задача определения силы сопротивления, действующей на частицу в суспензии, сводится к задаче отыскания полей скоростей и давлений вокруг частицы, движущейся в замкнутой оболочке. Течение жидкости в ячейке должно удовлетворять уравнениям Навье-Стокса. Рещение в аналитическом виде удается получить только для двух предельных случаев режима ползущего движения, описываемого уравнениями Стокса, и инерционного режима движения, описываемого уравнениями идеальной несжимаемой жидкости. На поверхности частицы должно удовлетворятся обычное условие отсутствия скольжения, т. е. скорость движения жидкости должна быть равной средней скорости движения частицы. Условия на внещней границе ячейки, отражающие воздействие всего потока на выделенную ячейку, не могут быть определены однозначно, поскольку механизм этого воздействия недостаточно понятен. В основном используются три типа условий 1) предполагается, что возмущение скорости, вызванное наличием частицы в ячейке, исчезает на границе ячейки [105] 2) ставится условие непротекания жидкости через границу ячейки (обращается в нуль нормальная составляющая скорости) и предполагается отсутствие касательных напряжений на границе ячейки (модель свободной поверхности) [106] 3) условие непротекания жидкости сохраняется, но предполагается, что на границе ячейки обращаются в нуль не касательные напряжения, а вихрь [107]. [c.68]

    Начнем рассмотрение процессов массопереноса с простейшего случая однокомпонентной жидкости в тонкой прослойке между незаряженными твердыми поверхностями. Здесь следует учитывать только один эффект, а именно — изменение структуры граничных слоев воды. При течении под действием градиента давления это приводит к необходимости учета послойного распределения вязкости по толщине прослойки г)(х). Если вид этой функции известен, то, решая уравнения Навье — Стокса, легко получить соответствующие выражения для скорости течения и потока в плоской щели или капилляре. В случае гидрофильных пористых тел это приводит к снижению коэффициентов фильтрации, а в случае гидрофобных — к их увеличению. [c.20]

    Для расчета коэффициента массоотдачп, учитывающего влияние концснтрациоппой поляризации на перенос растворенного вещества к поверхности мембраны, предложен ряд уравнений (табл. IV. 1). Эти расчетные уравнения основываются на решениях дифференциальных уравнений Навье—Стокса (для ламинарного [149] и турбулентного [150] потоков в каналах с отсосом ) и конвективной диффузии [144, 151]. [c.175]

    Первый и второй интегралы в правой части уравнения (7.83) характеризуют соответственно прибыль капель объемом V за счет коалесценции более мелких капель и их убыль вследствие коалесценции капель объемом и с другими каплями. Для определения горизонтальной составляющей скорости движения дисперсной фазы будем рассматривать горизонтальное течение двухфазной смеси как квазигомогенное. Такое допущение справедливо, когда частицы имеют малый размер и отношение вязкостей невелико. Тогда для ламинарного горизонтального потока квазигомогенной смеси по де-кантатору можно использовать решение уравнения Навье—Стокса для ламинарного течения жидкости в открытом канале прямоугозн — ного. сечения при свойствах жидкости, вычисленных через свойства фаз. В этом случае профиль горизонтальной составляющей скорости Ых (г) но высоте канала будет определяться ь/2 [c.301]

    Когда сопротивлегше потока 1/(В) равно стоксовскому сопротивлению 6тг11Г, выражение (III, 15) приводится к уравнению Стокса — Эйнштейна  [c.195]


Смотреть страницы где упоминается термин Стокс потоке: [c.83]    [c.12]    [c.28]    [c.106]    [c.219]    [c.326]    [c.264]   
Основные процессы и аппараты Изд10 (2004) -- [ c.43 , c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Стокса



© 2025 chem21.info Реклама на сайте