Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защищенные ядра

    Наличие пережима в топочных камерах пылеугольных котлов, предназначенных для сжигания АШ, а также в топочной камере газомазутного котла ПК-41, в значительной мере снижает надежность этих котлов. Основное назначение двустороннего пережима — защита ядра факела от охлаждения—-не достигается, поскольку температура экранных труб ниже, чем газов. В то же время проблема надежности экранных труб в зоне пережима усугубляется повышенными скоростями газов и сепарацией пыли на верхние скаты пережима. Время пребывания частиц топлива в топочной камере с пережимом меньше, чем в открытой топке. Поэтому ликвидация пережима должна способствовать не только повышению надежности экранных труб НРЧ, но и увеличению времени пребывания частиц топлива в зоне горения и снижению потерь с недожогом топлива. Однако, при этом возможно повышение температуры стенки верхней радиационной части и расширение зоны активного шлакования. [c.129]


    Горелка предназначена для сжигания горючих газов в факеле без образования дыма и сажи. Это достигается путем равномерного подвода паро-воздуш-ной смеси не только по периферии, но и в ядро пламени. Воздух, необходимый для горения, инжектируется паром. Сбрасываемый газ зажигается при помощи трех дежурных горелок, находящихся на верху факела. Такое устройство гарантирует поджигание газа даже при сильных бурях и дождях. В дежурные горелки постоянно подается смесь горючего газа с воздухо.м. Они зажигаются внизу факела специальным запальным устройством. Горящая смесь передается к дежурным горелкам в виде бегущего пламени. Для защиты факельной горелки от термического воздействия пламени предусмотрен экран, футерованный шамотным кирпичом. [c.134]

    Ядро атома бора имеет высокое сечение захвата нейтронов, поэтому бор используют для защиты от нейтронов и в регулирующих устройствах атомных реакторов (применяют борсодержащую сталь). [c.335]

    Так, например, с целью защиты эфирных связей и повышения устойчивости к гидролизу в качестве детергентов и смачивающих агентов добавляют реагенты с сульфатными группами [42], в частности лигносульфонаты. Они представляют собой ароматические ядра, соединенные пропановыми остатками в длинные неполярные цепочки с включенными в них полярными сульфогруппами, карбонильными, карбоксильными и гидроксильными группами. Такое строение определяет дипольный характер коллоидных частиц и обусловливает проявление ими поверхностно-активных свойств, которые возрастают с увеличением валентности катиона, входящего в состав лигносульфоната. По литературным данным, причиной возрастания поверхностной активности является увеличение молекулярной массы коллоидных частиц, связанных в агрегаты поливалентными катионами [43]. [c.37]

    Применение. Бор применяют как добавку к сплавам, увеличивающую нх жаропрочность и износостойкость, бор вводят также в поверхностный слой изделий (борирование). Поскольку ядро атома бора имеет высокое сечение захвата нейтронов, бор используют для защиты от нейтронов и в регулирующих устройстаах атомных реакторов (применяют борсодержащую сталь). [c.349]

    Переходя к следующему уровню организации, необходимо рассмотреть с и с т е м ы, состоящие из центрального ядра и частиц в поле ядра. Это — атомы, привлекающие внимание химиков в гораздо большей степени, чем частицы в ящиках. Однако и в атомах устойчивость есть следствие ограничений, налагаемых на движение частиц. Из элементарного курса химии известно, что энергетические уровни, отвечающие стационарным состояниям атомной системы, дискретны и переходы между ними связаны с излучением или поглощением кванта энергии. Атомы, следовательно, тоже защищены от случайных влияний. Это относится и к еще более организованным системам — молекул и твердых кристаллических тел. Но по мере усложнения систем появляются новые факторы, роль которых незаметна на низших уровнях. Обмен энергией или массой зависит от геометрического соответствия между реагирующими молекулами, от распределения электронной плотности в пределах молекулы, наличия экранирующих групп и т. п. Возникает вопрос, в какой мере можно распространить принцип защиты на сложные системы. Можно ли утверждать, что в таких системах любые, даже слабые внешние возмущения или химические влияния поведут к развитию процесса, итогом которого будет глубокая перестройка системы  [c.51]


    Заряд ядра атома 60 Защита от коррозии 281 Зола 293 [c.703]

    Для защиты каучуков и резин от старения в них вводят противостарители (антиоксиданты), которые замедляют окисление и старение часто такие соединения называют также ингибиторами окисления. Свойствами противостарителей обладают органические соединения ароматического ряда, как правило, содержащие амино-группы и гидроксильные группы в бензольном ядре. Специальные вещества, вводимые в резиновую смесь для защиты резин от старения,—противостарители—стали применяться с 1918 г. [c.190]

    При подготовке инженеров-механиков специализации 170506 Техника антикоррозионной защиты оборудования и сооружений важнейшей составляющей ядра знаний являются сведения о конструкционных материалах, обладающих повышенной коррозионной стойкостью в средах различной агрессивности. Владение этими сведениями позволяет выпускникам специализации осуществлять грамотный, с казной точки зрения, подбор материалов для создания ответственных металлоконструкций или использовать детали и узлы оборудования, выполненные из материалов повышенной коррозионной стойкости. Поэтому курс Коррозионностойкие стали и сплавы , читаемый студентам УГНТУ по кафедре Материаловедение и защита от коррозии в 9 семестре, является одним из базовых предметов специализации. [c.3]

    Но пригоден этот метод только в некоторых случаях. При наличии более одной гидроксильной группы в кольце А халкона одновременно с присоединением брома по двойной связи происходит бромирование ядра [66]. Предотвратить такую побочную реакцию можно защитой соответствующих гидроксильных групп [67, 68]. В качестве агента дегидробромирования кроме спиртовой щелочи, насыщенного аммиаком метанола [69], используются спиртовые растворы этилата натрия, поташа, буры, цианистого калия, диметиланилина, атакже пиридин [70]. В последнем случае иногда параллельно с удалением бромистого водорода происходит бромирование кольца А и в результате образуется бромзамещенный флавон [71]. [c.198]

    Ацилирование имеет назначением изменить химический характер заместителя и тем самым сделать возможным такие превращения несущего заместитель соединения, которые при свободной ной амнно- или оксигруппе недостижимы или удаются лишь с большими потерями. Так как группы NHg и ОН принадлежат к активнейшим заместителям, в сильнейшей степени влияющим на органическое ядро, с которым они соединены, и так как ацилирование уменьшает в заметной мере активность этих групп,, делая ароматическое ядро более устойчивым против многих воздействий (например окисления), то принято говорить, что ацилирование защищает аминогруппу, соотв. оксигруппу. В тех случаях, когда представляется необходимым выявить превращением ароматический характер ядра и когда есть основание ожидать, что заместитель (NHj или ОН) может повлечь добавочные изменения при превращении, прибегают к ацилированию или другим средствам химической защиты замещающей группы. [c.319]

    Выше, в главе о нитровании, мы видели примеры необходимости такой защиты. Азотная кислота, нитрующая углеводородное ядро соединения, может при наличии свободной аминогруппы в значительной мере содействовать его окислению. Чтобы избежать образования побочных продуктов, всегда понижающих выход и качество главных, мы стабилизуем аминогруппу (ацилированием, пре- [c.319]

    Хлорирование проводят в аппаратах, называемых хлораторами или абсорберами. Хлораторы для хлорирования в ядро должны иметь развитую теплообменную поверхность для отвода тепла реакции, устройство для диспергирования хлора в хлорируемой жидкости, защиту от кислой коррозии. В случае, когда в качестве катализатора используют железо, надо предусмотреть соответствующие устройства для размещения катализатора (полки, решетки и т. п.). Для диспергирования хлора в жидкости могут служить барботеры различных конструкций и турбинные мешалки (в том числе, всасывающая мешалка). Все это создает значительные трудности при конструировании хлораторов периодического "действия. [c.82]

    Мы уже успели привыкнуть к тому, что при делении тяжелых ядер нейтронами выделяется колоссальная энергия, не сравнимая ни с какими химическими реакциями. Пока не столь популярна энергия, выделяемая при радиоактивном распаде ядра, а она тоже более чем заметна. Если каждый акт деления урана-235 сопровождается выделением примерно 200 Мэв, то энергия альфа-частиц, испускаемых, например, кюрием-242 при радиоактивном распаде, составляет 6,1 Мэв. Это всего лишь в 35 раз меньше, но такой распад происходит самопроизвольно, со строго постоянной скоростью, не подверженной влиянию каких-либо физических или химических факторов. Для использования этой энергии нет нужды в сложных и громоздких устройствах более того, кюрий-242 — практически чистый альфа-излучатель, а это значит, что для работы с ним не требуется тяжелая радиационная защита. Альфа-частицы поглощаются даже листом бумаги, полностью отдавая ей свою энергию (превратившуюся в тепло). Грамм кюрия-242 каждую секунду испускает 1,2-10 альфа-частиц, выделяя при этом 120 ватт тепловой энергии. Поэтому кюрий-242 практически всегда раскален  [c.419]

    Гипотеза о том, что регулятор цикла находится в клеточной мембране, высказывалась сравнительно давно и в разных работах [10, И]. Наиболее веские соображения в ее пользу состоят в следующем. Регулятор должен вырабатывать сигналы к синтезу ДНК (или к делению) на основании информации о ситуации во внешней по отношению к клетке среде. Такая информация поступает прежде всего на клеточную мембрану, поэтому и сам регулятор естественно поместить там же. Помещение регулятора цикла в клеточное ядро было бы неразумно. Одна из главных функций ядра — сохранение генетической информации, для чего нужно по возможности защитить ядро от внешних влияний ясно, что эту задачу трудно совме-стить с задачей сбора информации извне. [c.142]


    Помимо ценности в синтезах, арилсульфонаты оказались эффективным средством защиты тканей от моли. Для получения препаратов с молезащитными свойствами необходимо введение в одно или оба ароматических ядра одного или нескольких атомов галоида [282]. [c.389]

    Важным свойством изотопа В является способность ядер ег атомов захватывать замедленные тепловые нейтроны, служащие bos будителями и распространителями цепной ядерной реакции. С по мощью В можно регулировать ход цепной реакции и, если нужнс гасить ее. Способностью В активно захватывать нейтроны (благо даря наличию в ядре атома бора вакансии для нейтрона) пользуют ся и для защиты от нейтронного излучения. [c.370]

    С ПОМОЩЬЮ алкилирования по Фриделю — Крафтсу возможна обратимая защита различных положений в ароматическом ядре при электронном замещении. Для этого вводят третичный бу-тильный остаток, который, будучи объемным, защищает, кроме того, два соседних с ним орто-положеняя и може быть снова си щеп лен в виде иэобутнлена. [c.418]

    Высокую активность ззз гистоауторадиографически установили р1гке1 и соавт. (1963) в ЖКТ, легких, надпочечниках и коже крыс в период от 5 до 30 мин после внутрибрюшинного введения меченого цистамина в дозе 100 мг/кг. Моп(1оу1 и соавт. (1962) определяли 8-цистамин в растворимых белках и субклеточных структурах большинства органов крыс после внутривенного введения протектора. Высказано предположение, что степень защиты отдельных тканей связана с концентрацией цистамина в их субклеточных структурах. Уже через 5 мин после внутривенного введения цистамина и АЭТ Владимиров (1967) обнаруживал их присутствие в митохондриях клеток селезенки и печени мышей. Тотальное гамма-облучение мышей (6 Гр) не влияло на распределение цистамина в субклеточных структурах. Через 30 мин после внутрибрюшинного введения цистамина мышам и крысам его внутриклеточное распределение у этих видов животных существенно не отличалось. Увеличение дозы цистамина у мышей приводит к повышению его содержания во всех субклеточных фракциях селезенки и печени, особенно в ядрах клеток [Владимиров, 1968]. Довольно быстро, в течение 5 мин, [c.45]

    Здесь все просто. Анилин содержит два весьма различных по характеру реакционных центра — аминогруппу и ароматическое ядро. Поэтому избирательно защитить один из них не составляет проблемы. Продукт реакции — и-нитроанилин — весьма устойчивое соединение и легко переживает условия достаточно жесткого щелочного гидролиза. Следовательно, удаление защиты также не вызы-. вает затруднений. В химии углеводов дело обстоит несравненно сложнее. Прежде всего, здесь функциональные группы весьма сходны, так что ввести защиту избирательно — а в этом весь смысл такой операции — весьма непросто. Таких групп в молекуле несколько (чтобы не сказать, много), а защитить нужно все, кроме одной-двух. Понятно, что это обстоятельство, вообще говоря, не упрощает задачу. Наконец, сами углеводы и практически все их производные — соединения достаточно высоко реакционноспособные. Из-за этого возможности воздействий, [c.122]

    Весьма ценно то, что метод носит общий характер, не требует защиты гидроксильных групп в ядрах дезоксибензоина и позволяет получать природные изофлавоны с флороглюциновым расположением гидроксигрупп. Выходы изофлавонов составляют 65-75%. [c.509]

    В ядро OS Linux встроены средства защиты от некорректного поведения пользователей. Нами была поставлена серия экспериментов, демонстрирующих реакцию OS на преднамеренное нарушение защиты памяти. [c.159]

    Методы защиты фенолов совершенно аналогичны методам, применяемым для защиты спиртов, так как поведение гидроксильных групп в фенолах и спиртах во многих реакциях, например при ацилировании и алкилироваиии, одинаково. Более того, гидроксильная группа в фенолах придает ароматическому ядру способность легко окисляться, поэтому, подобно спиртам, фенолы должны быть защищены от действия окислителей. Следует отметить, что имеется один метод защиты гидроксильной группы в фенолах от алкилирования, который вряд ли применим к спиртам. Речь идет об образовании водородной связи с карбонильными группами в ор/7ю-положениях. Этот метод рассматривается после других методов защиты фенолов, расположенных в той же последовательности, как и для спиртов. [c.226]

    Пирокатехины, как и другие двухатомные фенолы, для защиты обычно превращают в диалкильные или диацетильные производные, но ввиду соседства обеих гидроксильных групп возможна их совместная защита одной группой. Такая защита применяется главным образом при наличии других гидроксильных групп в ядре например в случае пирогаллола и некоторых флаваноидов. [c.239]

    Для производных изоиндола известны реакции, протекающие с участием функциональной группы и не затрагивающие ядро молекулы. Так, нитрил изоиндол-1-карбоновой кислоты (1.150) превращается в ее амид при действии 10 %-ной щелочи [160]. Практически количественно снимается фталильная защита у изоиндола (1,163) при действии гидразина при этом образуется изоиндол (1.84, Н = На) [392]. Изоиндол (1.128, б) ацетилируется в различных условиях с образованием преимущественно диацетильных производных — продуктов реакции по атому кислорода спиртовой группы и атому азота Ы-метилкарбомо-ильной группы [646, 647]. Изоиндолы (1.52) при гидрировании в метиловом спирте с добавкой метилата натрия и Рс1/Ва504 как катализатора сохраняют изоиндольную структуру, но теряют атомы хлора, давая 1-формил-2Н-изоиндолы с выходом 80 % [212]. Аналогично происходит дегидрирохлорирование (1.271) на катализаторе Рс1/С [254]. Изоиндол (1.283) при кипячении в течение 2 ч с избытком гидразина в этаноле образует соединение (1.284) [445]  [c.86]

    При окислении ароматических аминов, так же как и фенолов, происходит разрушение аро--чатического ядра илн образование производных хинона. Но если аминогруппу предварительно защитить а ц и л и р о в а н и е. w и пести о к и- [c.387]

    По Энгфельду само вещество и водный раствор его сохраняются неограниченно долго. Необходимо только защитить его от непосредственного действия солнечного света, который быстро его разлагает (хлорирование ядра). [c.690]

    В случае ароматических альдегидов или кетонов, содержащих в орто- или /м (2-положениях свободные окси- или аминогруппы, этот метод неприменим из-за параллельно происходящего окисления ароматического ядра до хииоиа. Однако, если ОН-или ЫНз-группы защитить ацетилированием, реакция проходит успешно. [c.475]

    Нитрогруппу можно сравнительно легко ввести в ядро ароматических аминов. Если для нитрования применяется только азотная кислота или раствор ее в уксусной кислоте, обычно рекомендуется защитить имеющуюся первичную или вторичную аминогруппу путем ацетилирования. Вместо азотной кислоты можно пользоваться смесью ее с серной кислотой. Однако следует иметь в виду, что серная кислота может оказать существенное направляющее влияние на нитрогрупну например, при нитровании р-толуидина одним молем азотной кислоты в присутствии большого избытка серной кислоты образуется 3-нитро-р-толуидин (XXVI), при нитровании же ацет-р-толуидида получается 2-нитроацет-р-толуидид (XXII). Аналогичным образом ведут себя N-алкильные производные р-толуидина. При действии 1 моля азотной кислоты на анилин в присутствии большого избытка [c.374]

    Избирательное восстановление замещающих групп. Некоторые группировки, связанные с изохинолиновой системой, можно восстановить, не затрагивая самого ядра. Так, например, винильная группа [143—145] и кетонная группа [146], находящиеся в положении 1, могут быть избирательно восстановлены в соответственно этильную и карбинольную группы нитроизохино-лины можно перевести в аминоизохинолины атомы галогена, находящиеся в разных положениях ядра, можно заместить на водород. Восстановительное отщепление бензильного радикала (введенного с целью защиты) в бензилокси-изохинолинах (стр. 320) является обычным приемом в синтезе оксиизохино-линов. Известно восстановительное расщепление 7-окси-8-(пиперидинометил)-изохинолина (I) до 7-окси-8-метилизохинолина (II) под действием метилата натрия в метаноле при повышенных температурах [147]. [c.289]

    Алкилирование боковой цепи триптофана. Отщепление Воо-группн при помощи безводной HF сопровождается трет-бутилированием ботовой цепи триптофана. Для защиты индольного ядра ст атой побочной рва ции необходимо добавлять тиоанизол, диметилсульфид и другие подобного типа реагенты. [c.226]


Смотреть страницы где упоминается термин Защищенные ядра: [c.159]    [c.153]    [c.206]    [c.164]    [c.157]    [c.202]    [c.197]    [c.157]    [c.228]    [c.393]    [c.301]    [c.187]    [c.187]    [c.475]    [c.188]    [c.208]    [c.214]   
Химия в атомной технологии (1967) -- [ c.60 ]




ПОИСК







© 2025 chem21.info Реклама на сайте