Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гелий энергия ионизации

    Гелий Не по сравнению с другими элементами обладает наиболь-энергией ионизации атома (24,59 эВ). Особая устойчивость Электре иной структуры атома отличает гелий от всех остальных химических элементов. [c.494]

    Энергия ионизации гелия по схеме Не = Не + < составляет 2370 кДж/моль. Вычислить значение первого ионизационного потенциала гелия в вольтах. [c.50]


    Гелий Не — первый типический элемент VHI группы. В его атоме завершен валентный электронный слой (Is ). Особая устойчивость электронной структуры атома отличает гелий от всех остальных химических элементов. По сравнению с другими элементами он обладает наибольшей энергией ионизации (24,58 эв), а поляризуемость его атома наименьшая. Взаимодействие атомов гелия возможно лишь за счет межмолекулярных сил. Но вследствие ничтожной поляризуемости молекул гелия межмолекулярные силы чрезвычайно слабы и могут проявляться лишь при очень низкой температуре или при высоком давлении. [c.609]

    На внещней электронной оболочке атомы щелочных элементов имеют по одному электрону. На второй снаружи электронной оболочке у атома лития содержатся два электрона, а у атомов остальных щелочных элементов — по восемь электронов. Имея во внешнем электронном слое только по одному электрону, находящемуся на сравнительно большом удалении от ядра, атомы довольно легко отдают этот электрон, т. е. характеризуются низкой энергией ионизации (табл. 14.2). Образующиеся при этом однозарядные положительные ионы имеют устойчивую электронную структуру соответствующего благородного газа (ион лития — структуру атома гелия, ион натрия — атома неона и т. д.). Легкость отдачи внешних электронов характеризует рассматриваемые элементы как наиболее типичные представители металлов металлические свойства выражены у щелочных элементов особенно резко. [c.382]

    Благородные газы заканчивают собой каждый период системы элементов. Кроме гелия, все они имеют на внешней электронной оболочке атома восемь электронов, образующих очень устойчивую систему. Также устойчива и электронная оболочка гелия, состоящая из двух электронов. Поэтому атомы благородных газов характеризуются высокими значениями энергии ионизации и, как правило, отрицательными значениями энергии сродства к электрону. [c.492]

    В отличие от атомов других элементов (кроме гелия Ь ) его валентный электрон непосредственно находится под воздействием атомного ядра, так как в атоме водорода нет экранирующего электронного слоя. Поэто.му энергия ионизации атома водорода велика (13,6 эВ). [c.245]

    Водород и гелий расположены вне групп периодической системы. Д. Купер указывает, что по энергии ионизации и сродству к электрону водород ближе всего стоит к углероду. Это объясняет прочность связи С—Н и ее малую полярность. По ig/ / =0 водород не может быть включен в первую или седьмую группу элементов, для которых эта величина равна 1,40 (см. табл. 6). В клетках — 1,0, -fl, +2 расположены четыре наиболее долгоживущие (устойчивые) частицы, образующиеся при ядерных реакциях. [c.19]


    Первая энергия ионизации изменяется периодически при увеличении порядкового номера элемента (рис. 15.5). Она достигает максимального значения у благородных газов. От гелия к литию и от неона [c.361]

    Электронное строение атомов. Атомы неметаллических элементов имеют большое число электронов (4—8) на внешнем энергетическом уровне. Лишь у водорода и гелия (1-ый период) на внешнем энергетическом уровне находится соответственно 1 и 2 электрона, у бора (2-ой период) — 3 электрона. В соответствии с электронным строением атомы неметаллов, вступая в химические взаимодействия, стремятся достроить электронную систему внешнего уровня до 8 электронов (водород— до двух), т. е. атомы неметаллов легче принимают электроны, чем отдают их. Поэтому для элементов-неметаллов характерны большие значения энергий ионизации. [c.165]

    При применении гелия высокой чистоты в качестве газа-носителя можно по повышению ионизационного тока детектировать примерно с одинаково высокой чувствительностью как органические, так и неорганические газы, поскольку энергия возбуждения гелия выше энергии ионизации почти всех остальных веществ (Берри, 1962). [c.149]

    Валентный слой атома аргона, как и неона, содержит восемь электронов. Вследствие большой устойчивости электронной структуры атома (энергия ионизации 15,76 эВ) соединения валентного типа для аргона не получены. Имея относительно больший размер атома (молекулы), аргон более склонен к образованию межмолекулярных связей, чем гелий и неон. Поэтому аргон в виде простого вещества характеризуется несколько более высокими температурами плавления (—184,3 °С) и кипения (—185,9 °С). Он лучше адсорбируется. [c.540]

    Высокая первая энергия ионизации гелия обеспечивает эффективное возбуждение металлов и неметаллов в плазме. [c.615]

    Энергии ионизации водорода, гелия и лития соответственно равны 13,00 24,58 и 5,39 ое. Покажите связь этих значений с химическими свойствами перечисленных трех элементов. [c.158]

    Значительно сложнее обстоит дело с нейтральными атомами. Так, в атоме гелия (2=2) два электрона, но для отрыва каждого из них потребуются разные энергии ионизации (и энергии связи) 24,58 эв для первого и 54,40 яе для второго. Для расчета энергии связи электронов в сложных атомах можно пользоваться формулой Бора, но вместо понятия о заряде ядра следует ввести понятие об эффективном заряде ядра 2, хотя последнее и выходит за рамки теории Бора. [c.56]

    Экспериментальные данные показывают, что в нормальном гелии второй электрон находится в -состоянии и следующий возбужденный уровень очень высок — гораздо выше, чем полная энергия ионизации водорода. Уровень 1 2 лежит заметно ниже, чем уровень 1 2/7. Это мы можем связать с тем фактом, что состояния 2з ближе к ядру, чем 2р. Во всяком случае, тот факт, что уровень 2 в гелии ниже уровня 2р, дает нам повод ожидать, что нормальным состоянием лития будет 2 . В литии мы видим, что уровень 2р заметно выше, чем уровень 2з это приводит к тому, что основным состоянием бериллия должно быть 2з ). Теперь оболочка 2 заполнена. Тот факт, что в бериллии уровень 2р ниже, чем 3 , заставляет нас ожидать, что у бора низшей конфигурацией будет 2/ ). В следующих шести элементах нормальная конфигурация в каждом случае получается последовательным добавлением 2/ -электрона к нормальной конфигурации предшествующего атома. На неоне этот процесс, в силу принципа Паули, заканчивается, поскольку шесть есть максимальное число электронов, которое может быть в любой р оболочке. При переходе от бора к неону мы наблюдаем, что интервал между нормальной и низшей возбужденной конфигурациями последовательно возрастает. Поэтому, зная спектр элемента 2, можно предсказать порядок расположения низших конфигураций элемента (Е- - ). Неопределенность при этом невелика. [c.320]

    Переход от неона к натрию сопровождается таким же резким уменьшением эффективного заряда ядра и энергии ионизации, как и переход от гелия к литию. Одиннадцатый электрон натрия располагается на более высокой энергетической 35-орбитали. Низкий потенциал ионизации внешнего электрона и образование катиона К а+ с электронной конфигурацией инертного газа определяет хи- [c.241]

    Особенность строения электронной оболочки атома водорода (как н гелия) не позволяет однозначно решить, в какой группе периодической системы он должен находиться. Действительно, если исходить И числа валентных электронов его атома, то водород должен нахо-д.1ться в I группе, что подтверждается также сходством спектров щ,е-лочных металлов и водорода. Со щелочными металлами сближает водород И его способность давать в растворах гидратированный положительно однозарядный ион Н+ (р). Однако в состоянии свободного иона Н + (г) — протона — он не имеет ничего общего с ионами щелочных мгталлов. Кроме того, энергия ионизации атома водорода намного больше энергии ионизации атомов щелочных металлов. [c.272]

    В подобных реакциях в качестве восстановителей могут выступать металлы и металлоиды, а также другие элементарные веигест-ва, кроме гелия, неона и фтора (см. также гл. VII, 1 и 2). Восстановительная активность элементарных веществ определяется в основном, как это видно из приведенных рассуждений, энергиями ионизации атома и сублимации вещества чем они меньше, тем сильнее восстановительная активность элементарного вещества. [c.118]


    Поскольку благородные газы чрезвычайно инертны, следует ожидать, что, если они и способны вступать в реакции, то лишь в очень жестких условиях. Далее, следует ожидать, что способность к химическим превращениям в первую очередь должны проявлять наиболее тяжелые благородные газы, поскольку они обладают более низкими энергиями ионизации, как это видно из рис. 6.6, ч. 1. Более низкая энергия ионизации предполагает возможность потери атомом электрона при образовании ионной связи. Кроме того, поскольку элементы группы 8А уже содержат в своей валентной оболочке восемь электронов (за исключением гелия, в атоме которого всего два электрона), образование ими ковалентных связей возможно лишь с участием орбиталей из надва-лентной оболочки. Но, как известно (из разд. 7.7, ч. 1), этой способностью обладают главным образом атомы более тяжельос элементов. [c.287]

    Из приведенных данных видно, что по величине энергии ионизации водород стоит шачительно ближе к фтору, чем к литию, и никакие металлические свойства свободному атому водорода, следовательно, не присущи. Точно так же положительно заряженный ион водорода не имеет ничего общего со свойствами ионов щелочных металлов, поскольку является элементарной частицей — протоном. Вместе с тем в электрохимическом ряду напряжений водород ведет себя как металл. Это объясняется тем, что электрохимический ряд напряжений служит характеристикой атомов металлов в водных растворах (см. гл. V, 11). При ионизации атома водорода в присутствии воды образуется ион гидроксония Н3О+, что сопровождается выделением энергии. Вследствие этого энергия ионизации атома водорода в водном растворе резко снижается и становится близкой к величине энергии ионизации атомов металлов. Заметим, что по некоторым физическим свойствам ион Н3О+ в растворе ведет себя подобно катионам щелочных металлов. Однако эти особенности не относятся к атому или иону водорода и не дают оснований рассматривать его как металл. Сходство строения внешней электронной оболочки атома водорода с внешними электронными оболочками атомов щелочных металлов носит, следовательно, такой же формальный характер, как и однотипность строения внешних электронных оболочек атома гелия и атомов элементов II группы. [c.160]

    Все соединения фтора, в том числе кислородные, содержат F l Катион Р существовать не может значение перной энергии ионизации атома фтора (1735 кДж/моль) меньше лишь, чем у атомов гелия и неона. Это означает, что если получить катион F (химическим путем это неосуществимо, так как фтор наиболее электроотрицательный элемент), то при столкновении с любой частицей, кроме атомов Не или Ne, он превратится в атом F. [c.457]

    В III— VIII группах главных подгрупп расположено 30 р-элементсв и два s-элемента (водород и гелий). В периодах слева направо в атомах р-элементов заполняется электронами р-подуровень от р до р . Валентными являются не только р-электроны, но и s-электроны внешнего уровня атома. Их сумма соответствует номеру группы, в которой расположен элемент, и высшей положительной степени окисления ns p , ns p , ns p , ns p, ns p , ns p . С увеличением числа электронов на внешнем уровне атомов уменьшается восстановительная способность атомов и усиливается их окислительная активность (увеличивается электроотрицательность, сродство к электрону, энергия ионизации элементов). В группах периодической системы сверху вниз у р-элементов заметно усиливаются восстановительные свойства. [c.229]

    Работа галиевого детектора основывается на эффекте Пеннинга. В камере находится источник р-излучения. Электроны атома гелия (газа-носителя) в результате столкновения с р-частицами переходят на более высокий энергетический уровень. Энергия возбуждения больше энергии ионизации молекул примеси, поэтому при столкновении возбуждаемых атомов гелия с этими молекулами происходит их ионизация. Величина ионизационного тока характеризует количество примесей. Важной особенностью гелиевого детектора, является то, что он позволяет определять такие примеси постоянных газов, как азот, кислород, водород и т. п. Чувствительность гелиевого детектора достигает объемной концентрации 10" %. [c.402]

    ГЕЛИЙ (от греч. helios-солнце лат. Helium) Не, хим элемент Vni гр. периодич. системы, ат. и. 2, ат. м. 4,002602 относится к благородным газам Атмосферный Г. состоит из изотопов Не (0,00013% по объему) и Не. Поперечное сечение захвата тепловых нейтронов для Не 68-10" м для Не-54-10" м Конфигурация электронной оболочки Is энергия ионизации Не -> Не - Не соотв. 2372 и 5250 кДж/моль ван-дер-ваальсов радиус 0,122 нм, ковалентный радиус 0,04-0,06 нм. [c.513]

    Атомно-эмиссионное детектирование основано на том, что хроматографический элюат вводят в плазму, подцерживаемую в инертном газе, где проходит полная атомизация, а атомы и ионы, образующиеся в плазме, возбуждаются и излучают свет. Для варьирования селективности используют различные типы плазмы. Среди них плазма, индуцированная микроволновым полем (МИП), поддерживаемая в гелии или аргоне, прямая проточная аргоновая плазма (ППП), индуктивно-связанная аргоновая плазма (ИСП), емкостно-связанная плазма и емкостно-стабилизированная плазма. Из всех этих вариантов гелиевая плазма, индуцированная микроволновым полем, наиболее предпочтительна по следующим причинам. Эта плазма работает при атмосферном давлении, что сильно упрощает соединение с ГХ-системой. Требуемые скорости потока находятся в диапазоне 30-300 мл/мин, т. е. значительно ниже, чем, например, в случае ИСП. Использование гелия в качестве газа для плазмы также удобно, поскольку он обычно выступает в качестве газа-носителя в ГХ и особенно потому, что он обеспечивает более простой спектральный фон и значительно более высокую энергию возбуждения, чем аргон (энергия ионизации [c.614]

    Вычислим энергию ионизации атома гелия и соответствующих гелиеподобных атомов. Энергия ионизации /, т. е. энергия, требуемая для отрыва одного электрона, равна разности энергии [c.340]

    Из табл. И следует, что уже простой вариационный метод дает удовлетворительное согласие с экспериментом. Хиллераас [55] показал, что путем использования пробной волновой функции с несколькими вариационными параметрами можно получить энергию двухэлектронных систем со спектроскопической точностью, т. е. порядка 10 . При использовании функции с 8 параметрами Хиллераас получил для энергии ионизации атома гелия величину / = 0,9037, что хорошо согласуется с экспериментальным значением. [c.342]

    Наряду с ионизацией инертных газов ударами ионов изучалась также ионизация под действием ударов быстрых нейтральных атомов этих газов. В отличие от ионов наблюдаемая при бомбардировке инертных газов их собственными атомами минимальная энергия ионизации оказывается более близкой к вычисленной по формуле (28.1). Так, при изучении ионизации неона, аргона, криптона и ксенона собственными быстрыми атомами этих газов Варни [1247] получил для энергии начала заметной ионизации значения, в среднем лишь в полтора раза превышающие удвоенные потенциалы ионизацит[ соответствующих газов. Принимая, однако, во внимание, что, работая с более чувствительной методикой, Гортои и Миллест [785] наблюдали начало ионизации в гелии при энергии быстрых атомов Не около 50 эв, почти ровно вдвое превышающей потенциал ионизации гелия, [c.422]

    В подгруппе инертных элементов сохраняется характерная для всех р-элементов тенденция уменьшение электронофильностн с ростом порядкового номера элемента как результат усложнения структуры атомного остова. Так, в частности, энергия ионизации гелия равна 24,48 эВ, а радона — 10,75 эВ. [c.71]

    Характеристика элемента. Электронная структура и свойства гелия типичны для элементов, завершающих периоды. В его атоме имеется заполненный s-уровень электронов, близко расположенный к ядру. Это придает всей структуре атома особую устойчивость. По сравнению с другими элементами гелий обладает наименьшей поляризуемостью атома и наибольшей энергией ионизации (24,58 эВ). Электронные орбитали атомов полностью заняты электронами и поэтому между атомами гелия невозможно образование химической связи на две связывающие молекулярные орбиталн в таком случае приводится две разрыхляюшие и никакого выигрыша не получается, так как энергия связывающих и разрыхляющих орбиталей взаимно компенсируется. Взаимодействие атомов гелия происходит за счет межмолекулярных сил. Эти силы слабые и проявляются лишь при очень низкой температуре или высоком давлении, поэтому гелий труднее всех веществ переводится в жидкое состояние. Он становится жидким при таких температурах (около [c.198]

    Переход от инертного газа гелия, завершающего 1-й период, к первому члену 2-го периода требует уже принципиально другого подхода к рассмотрению атомов. Три и более электронов не могут располагаться на одной орбитали, так как это противоречит принципу Паули. Электроны начинают заселять 2-й уровень, энергетические ячейки в котором не идентичны по энергиям. Межэлектронное отталкивание расщепляет уровни энергии с одинаковым квантовым числом л=2, и это в данном периоде приводит к появлению двух состояний 2 и 2р. На эти энергетические подуровни заряд ядра действует по-разному. Электрон на 25-орбитали более явственно ощущает заряд ядра через экран, созданный двумя внутренними прочно связанны.ми 152-электронами. Расчеты, проведенные для лития, доказывают, что его энергия ионизации, равная 520 кДж/моль, соответствует эффективному заряду 2эфф=1,26. Это означает, что два внутренних электрона нейтрализуют заряд ядра меньше, чем сумма их зарядов их эффективность действия (3— —1,26=1,74) равна (1,74/2) 100—87%. Это означает, что электрон в 25-состоянии способен проникать к ядру сквозь заслон из двух 152-электронов. Подуровни 2р близко к ядру находиться не могут ведь эта волновая функция вблизи ядра обращается в нуль. Следовательно, на электрон в 2р-состоянии влияет только разница между зарядом ядра и суммой зарядов внутренних электронов. Принцип Паули и расщепление энергетических уровней позволяют понять закономерность изменения характера элементов при движении вдоль периодов. [c.200]

    Характеристика элемента. У кислорода по сравнению с атомом азота падает величина энергии ионизации, что вызвано спариванием электронов. В атоме азота пять электронов второго уровня занимают 2s2- и 2/ з-орбитали. При этом каждый из трех 2р-электронов располагается на одной из трех2р-орбиталей. В атоме кислорода на этом втором уровне появляется шестой электрон, так как уже нет свободной 2р-орбитали, то этот электрон вынужден располагаться на одной из тех 2р-орбиталей, где уже есть электрон. Межэлектронное отталкивание резко возрастает и перекрывает эффект действия заряда ядра. Кислород ионизируется легче, чем азот. Этим, между прочим, объясняется содержание ионосферы Земли, где много озона и ионов кислорода. Атом О имеет электронную конфигурацию ls 2s 2pJ2py 2p в которой находятся два неспаренных электрона. Иначе говоря, этот атом — бирадикал, а радикальные частицы — одни из самых активных. Действительно, кислород реагирует со всеми элементами, кроме гелия, неона и аргона. Он предопределяет форму существования всех остальных элементов. В свободном состоянии кислород — двухатомный парамагнитный газ. Его парамагнетизм обусловлен тем, что при образовании связей между двумя атомами у каждого из них остается неспаренным один электрон O = d . Кислород — электроотрицательный элемент и по величине электроотрицательности уступает только фтору. В подавляющем большинстве случаев ему приписывают степень окисления —2, хотя известны для него и другие степени окисления —1, О, -fl, 4-2, +4. [c.229]


Смотреть страницы где упоминается термин Гелий энергия ионизации: [c.281]    [c.452]    [c.220]    [c.212]    [c.402]    [c.371]    [c.422]    [c.196]    [c.96]    [c.96]    [c.337]    [c.544]   
Лекции по общему курсу химии (1964) -- [ c.8 , c.10 , c.12 ]

Как квантовая механика объясняет химическую связь (1973) -- [ c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия ионизации



© 2024 chem21.info Реклама на сайте