Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки комплементарные

    Модель ДНК Уотсона и Крика сразу же позволила понять принцип удвоения ДНК. Поскольку каждая из цепей ДНК содержит последовательность нуклеотидов, комплементарную другой цепи, т. е. их информационное содержание идентично, представлялось вполне логичным, что при удвоении ДНК цепи расходятся, а затем каждая цепь служит матрицей, на которой выстраивается комплементарная ей новая цепь ДНК. В результате образуются два дуплекса ДНК, каждый из которых состоит из одной цепи исходной родительской молекулы ДНК и одной новосинтезированной цепи. Экспериментально показано, что именно так, по полуконсервативно-му механизму, происходит репликация ДНК (рис. 26). Несмотря на простоту основного принципа, процесс репликации сложно организован и требует участия множества белков. Эти белки, как и все другие, закодированы в последовательности нуклеотидов ДНК- Таким образом, возникает важнейшая для жизни петля обратной связи ДНК направляет синтез белков, которые реплицируют ДНК. [c.44]


    Хотя ни один из растительных белков не может обеспечить нас всеми незаменимыми аминокислотами, смеси таких белков — могут. Такие комбинированные продукты питания, которые содержат взаимодополняющие (комплементарные) белки (табл. IV.7), входят в состав традиционной кухни всех народов мира. [c.262]

    Первой ступенью в эволюции жизни на Земле была, вероятно, эволюция молекул. В водном растворе содержалось множество мелких молекул, которые беспорядочно образовывались под действием солнечного света, разрядов молний и других источников энергии и обладали способностью катализировать реакции, приводившие к синтезу копий самих себя. По-видимому, этот процесс проходил в две стадии во-первых, под влиянием каталитического действия (как на матрице) шло образование молекулы, комплементарной по структуре первоначальной молекуле, а затем эта вторая молекула служила матрицей для образования новой молекулы, которая была идентична первоначальной молекуле. Тот факт, что такой двухстадийный процесс репликации (или эквивалентный ему одностадийный процесс репликации молекулы, состоящей из двух комплементарных частей) осуществляется в настоящее время нуклеиновыми кислотами при репликации генов, позволяет предположить, что первыми самовоспроизводящимися молекулами на Земле были действительно молекулы нуклеиновой кислоты. Учитывая важную роль, которую белки играют в живых организмах, полагали, что именно они должны были быть первыми самоудваивающимися молекулами, однако существующие в этом отношении данные говорят в пользу нуклеиновых кислот. [c.465]

Рис. 2,5. Схема пептидного синтеза с использованием комплементарных носителей, предложенная Лентсингером и Клотцем, которая очень схожа с механизмом рибосомного синтеза белков [6]. Рис. 2,5. Схема <a href="/info/102201">пептидного синтеза</a> с использованием комплементарных носителей, предложенная Лентсингером и <a href="/info/262455">Клотцем</a>, которая очень схожа с механизмом <a href="/info/510563">рибосомного синтеза</a> белков [6].
    ИЗ цепей ДНК дефектна (например, содержит тиминовый димер или АР-сайт), а комплементарная цепь не могла быть синтезирована из-за дефекта в матрице и поэтому напротив поврежденного участка остается незастроенная брешь (см. рис. 47). Единственный способ безошибочной репарации такого повреждения — это использовать в качестве эталона второй полученный при репликации дуплекс ДНК. т. е. использовать рекомбинацию для репарации повреждения. У Е.соН эту задачу способен выполнить Re A-белок вместе с ферментами репарации. Для НесА-белка одноцепочечный участок двуспиральной молекулы ДНК, содержащий повреждение, является излюбленным участком связывания. Связавшись с таким местом, Re A-6e-лок вовлекает его в рекомбинационное взаимодействие с гомологичным неповрежденным дуплексом, причем как разорванная, так и поврежденная цепи ДНК оказываются спаренными с неповрежденными комплементарными цепями, что позволяет их репарацию описанными в предыдущей главе репарационными системами (рис. 62). Таким путем осуществляется пострепликативная, или рекомбинационная, репарация. Аналогичным образом за счет рекомбинации происходит репарация двуцепочечных разрывов ДНК. [c.94]


    Регуляторные белки, например репрессор Х и Сго, прочно связываются со специфическими последовательностями ДНК длиной 15-20 пар оснований. Каждый из этих белков должен выбрать свой операторный участок из примерно 5 млн. пар оснований, которые составляют бактериальную ДНК. В данной главе рассмотрены особенности структуры белков, которые ответственны за эту их способность. Принцип действия прост структура белка комплементарна структуре ДНК если белок находит нужную молекулу ДНК, молекулы белка и ДНК подходят друг другу, как ключ к замку. Кроме того, мы покажем, каким образом связавшийся регуляторный белок может влиять на экспрессию гена путем негативной или позитивной регуляции. [c.42]

    Чужие белки часто включаются в тело как часть болезнетворных агентов -вирусов, бактерий, грибков, паразитов. Химия тела так сильно зависит от наличия нужных белков в определенном месте, в определенное время и в нужном количестве, что при появлении чужого белка сразу вырабатывается сигнал для нейтрализации возможной опасности. Стратегия защиты организма иммунной системой заключается в синтезе белков, окружающих часть молекулы чужого белка. Опять биохимическое взаимодействие становится возможным из-за соответствия формы молекул антител и антигенов (свойство комплементарности). Если молекула захватчика будет окружена, она не сможет причинить вреда. [c.486]

    Комплементарный белок, возникающий в крови для инактивации специфического постороннего белка - антигена [c.543]

    Комплементарные белки Смесь белков, содержащих все необходимые аминокислоты [c.545]

    Слова Дельбрюка были немедленно переданы Полингу, который тут же написал мне письмо. Первая его часть выдавала скрытое беспокойство в ней ничего не говорилось о сути дела, и она содержала только приглашение на конференцию по белкам, к которой он решил добавить еще и доклады о нуклеиновых кислотах. Потом он все же раскрывал карты и просил сообщить подробности изящной новой структуры, о которой я писал Дельбрюку. Читая это письмо, я вздохнул с облегчением, сообразив, что в момент доклада Лайнуса Дельбрюк еще не знал о комплементарной двойной спирали. Он имел в виду не ее, а идею соединения подобного с подобным. К счастью, к тому времени, как мое письмо ДОШ.ЛО до Калифорнийского технологического института, наши пары оснований уже сложились. Если бы не это, я оказался бы в ужасном положении мне пришлось бы сообщить Дельбрюку и Полингу, что я поспешил написать им об идее, возникшей у меня всего за двенадцать часов до этого и прожившей лишь двадцать четыре часа. [c.121]

    Структурные и термодинамические предпосылки механизма сближения и ориентации в ферментативном катализе. Итак, для эффективности катализа важно, чтобы замораживание реагирующих центров X и Y, которое происходит в комплексе XE-RY (и сопровождает образование связи E-R), как можно больше приблизило реакцию к переходному состоянию X...Y. Для этого необходимо, чтобы строение активного центра в высшей мере было комплементарным по отношению к той структуре молекулы субстрата, которую она должна принять в переходном состоянии реакции. Именно поэтому активный центр ферментов расположен обычно в складках полипептидных цепей, образующих как бы щель . Где-то в глубинных участках этой щели расположены аминокислотные остатки, взаимодействующие с субстратом. Благодаря такой структуре активного центра при переходе молекулы субстрата из свободнодвижущегося состояния (из раствора) в сорбированное состояние (когда она, образно говоря, втискивается в активный центр) происходит необходимое для реакции замораживание вращательных степеней свободы и сближение ее с каталитически активными группами белка. [c.56]

    Общая схема репликации двухнитевой аденовирусной ДНК представлена на рис. 138. К синтезированному в зараженной клетке вирус-специфическому терминальному белку (точнее — к его более крупному предшественнику) ковалентно присоединяется нуклеотид, и этот нуклеотид-белковый комплекс выполняет роль затравки. Синтез новой цепи может начаться на любом конце генома, так как в силу наличия инвертированных концевых повторов оба конца Молекулы аденовирусной ДНК идентичны. Синтез дочерней цепи сопровождается вытеснением одной из родительских цепей. После Полного вытеснения этой цепи высвобождается ее З -конец, к которому присоединяется новая нуклеотид-белковая затравка. Син-1 з комплементарной цепи происходит теперь на однонитевой матрице, т.е. по репарационному типу. Результат этих двух актов — синтеза с вытеснение.м на родительском дуплексе и репарационного синтеза на вытесненной цепи — полностью эквива- [c.267]

    Механизм синтеза белка включает перенос информации от одной из цепей спирали ДНК к молекуле рибонуклеиновой кислоты (РНК), которая комплементарна данной цепи ДНК. Молекула РНК содержит сахар рибозу [c.460]

    ЭТОМ образуются специфич. пары комплементарных оснований, имеющие почти одинаковые размеры. Поэтому двойная спираль имеет очень однородную регулярную структуру, мало зависящую от конкретной последовательности оснований-св-во очень важное для обеспечения универсальности механизмов репликации (самовоспроизведение ДНК или РНК), транскрипции (синтез РНК на ДНК-матрице) и трансляции (синтез белков на РНК-матрице). В каждом из этих т. н. матричных процессов К. играет определяющую роль. Напр., при трансляции важное значение имеет К. между тройкой оснований матричной РНК (т. и. кодоном, см. Генетический код] и тройкой оснований транспортной РНК (поставляют во время трансляции аминокислоты). К. определяет также вторичную структуру нуклеиновых к-т. Одноцепочечные РНК благодаря К. оснований, навиваясь Сами на себя, образуют относительно короткие двухспиральные области ( шпильки и петли ), соединенные одноцепочечными участками, К. в отдельных парах оснований ДНК может нарушаться из-за появления отклонений в их строении, к-рые могут возникать спонтанно или в результате действия разл. факторов (химических и физических). Следствием этих изменений м. б. мутации. [c.443]


    Полинг, как и Дельбрюк, был сразу же покорен. Будь ситуация хоть немного иной, он почти наверное начал бы отстаивать достоинства своей идеи. Но подавляющие биологические преимущества комплементарной к самой себе молекулы ДНК заставили его сдаться. Однако прежде чем считать вопрос решенным, он хотел познакомиться с данными Кингз-колледжа. Он рассчитывал сделать это три недели спустя, в середине апреля, когда должен был поехать в Брюссель на Сольвеевскую конференцию по белкам. [c.123]

    Для объяснения этих фактов активный центр химотрипсина представляют обычно (в развитие идей школы Нимэнна [55, 64]) состоящим из участков, комплементарных по отношению к отдельным фрагментам молекулы специфического субстрата [7, 59, 65]. Движущая сила сорбции фрагмента К на ферменте — это гидрофобное взаимодействие. Фактически образование комплекса фермент — субстрат обусловлено тем, что боковая гидрофобная субстратная группа подвергается термодинамически выгодной экстракции из воды в органическую среду белка (см. 4—6 этой главы). Молекулярная модель активного центра была предложена Блоу с сотр. [66] на основании результатов рентгеноструктурного анализа кристаллического химотрипсина (см. рис. 9). Размеры гидрофобной полости в районе активного центра составляют (10—12) х(5,5—6,5)Х(3,5—4) А. Эти размеры достаточны, чтобы вместить боковую цепь триптофана или тирозина, но вместе с тем форма полости делает возможной только лишь одну, строго определенную ориентацию плоскости ароматического кольца. [c.134]

    Многие вирусы имеют геном в виде (—)нитн РНК. У некоторых таких вирусов геном представлен единой непрерывной молекулой, а у других он сегментирован, т. е. состоит из нескольких молекул. Общим свойством вирусов с (—)РНК-геномом является то, что в состав их вирусных частиц входит РНК-полимераза, способная копировать РНК-матрицу. Биологический смысл такой организации понятен. Поскольку, по определению, (—)РНК не может выполнять функции мРНК, для образования своих мРНК вирус должен внести в клетку не только геном, но и фермент, умеющий снимать с этого генома комплементарные копии. Другое общее свойство этих вирусов заключается в том, что матрицей для репликации / транскрипции является не свободная РНК, а вирусный рибонуклеопротеид (РНП) — молекула РНК, равномерно покрытая вирус-специфическим белком. [c.323]

    Механизм передачи ДНК из клетки в клетку состоит в том, что специальный белок узнает определенную последовательность, имеющуюся у трансмиссивных и мобилизуемых плазмид и называемую ориджином переноса, вносит в эту последовательность одноцепочечный разрыв и ковалентно связывается с его 5 -концом. Затем цепь ДНК, с которой связан белок, переносится в клетку-реципиент, а неразорванная комплементарная цепь остается в клетке-доноре. Весь этот процесс осуществляют белки, кодируемые га-генами трансмиссивной плазмиды, в частности один из этих генов кодирует специальную хеликазу, которая в АТР-зависимой реакции разделяет переносимую в реципиент и остающуюся в доноре цепи ДНК. Клеточный аппарат синтеза ДНК достраивает одиночные цепи и в доноре и в реципиенте до дуплексов. Белок, сидящий на 5 -конце перенесенной цепи, видимо, способствует замыканию плазмиды в реципиентной клетке в кольцо (таким образо.м, этот белок напоминает по свойствам топоизомеразы 1-го типа и родственные ферменты, например А-белок фага ФХ174 см. гл. ХП1/. [c.111]

    Механизм действия метилирования не раскрыт. Модифицированная ДНК может оказывать влияние на локальную структуру в составе хромосомы. Вероятно, метилирование отдельных сайтов в составе гена меняет характер взаимодействия с белками и структуру хроматина. Действительно, сайты метилирования в отдельных исследованных генах совпадают с так называемыми гиперчувствитель-ными к нуклеазам сайтами в составе хроматина, наличие которых отражает активное состояние гена или его готовность к активации (см. гл. ХП). Метилирование может влиять и на структуру ДНК-Например, метилирование цитозина в составе синтетических поли-дезоксинуклеотидов с повторяющейся комплементарной последовательностью типа d( pG) -d(Gp ) способствует их переходу в Z-конформацию ДНК. [c.220]

    Для образования первой затравки на молекуле ДНК SV40 необходимо присоединение к ori вирус-специфического белка — так называемого большого Т-антигена, который выполняет функции хеликазы, Взаи.модействие между ori и специфическими белками создает необходимые условия для синтеза затравки ферментами, которые умеют это делать, обычно праймазой. Однако в некоторых системах (в частности, у того же фага л) требуется дополнительное активирование оп. Эта цель может достигаться, например, тогда, когда в участке ori происходит транскрипция. Для такой транскрипционной активации важен именно сам акт транскрипции, а не ее продукты — РНК или белки. Считается, Что в процессе транскрипции ослабляется связь между комплементарными цепями когда такое ослабление захватывает участок ori. Он становится более доступным для праймазы. [c.265]

    ДНК, входящая в состав частиц вируса генатита В,— это молекула, построенная из двух линейных компонентов полноразмерной (—)ни-ти ( 3,2 т. п. н.) с белком, ковалентно присоединенным к 5 -концу, а также сегмента (+)нити (1,7—2,8 т. п. н.). от сегмент содержит участки, комплементарные обоим концам (—)нити, и поэтому удерживает вирионную ДНК в кольцевой форме (рис. 163, а). В вирионе имеется вирус-специфическая ДНК-полимераза, способная достраивать (+)нить до размера полного генома. Геном вируса мозаики цветной капусты крупнее и содержит около 8 т. п. н. это двухнитевая кольцевая молекула, обе цепи которой не непрерывны (рис. 163, б). [c.315]

    Наиболее простой цикл репликации / транскрипции вирусной РНК — это когда с геномной РНК снимается комплементарная копия и эта копия, в свою очередь, служит матрицей для синтеза геномной РНК роль мРНК в образовании всех необходимых для размножения вируса белков выполняет родительская РНК. Если отвлечься от частностей, то этот принцип реализуется у фага Ор и у вируса полиомиелита. Однако стратегии этих вирусов различаются в одном существенном отношении. Фаг Ор размножается в клетках прокариот, поэтому его (+)РНК может функционировать как истинная полицистронная мРНК. Хозяин вируса полиомиелита — эукариотная клетка. Соответственно на (+)РНК этого вируса имеется единственная точка инициации трансляции, и все зрелые вирус-специфические белки возникают в результате ограниченного протеолиза единого полипротеина-предшественника. Как и у ДНК-содержащих вирусов, у вирусов с РНК-геномом разные вирус-специфические белки требуются в разных количествах и в разное время, а образование всех этих белков из единого предшественника затрудняет количественную и временную регуляцию их производства. Поэтому у РНК-содержащих вирусов эукариот возникли механизмы, обеспечивающие появление разных мРНК для [c.331]

    По своему существу аффинная хроматография — это особый тип адсорбционной хроматографии. В отличие от того, что было описано в гл. 6, адсорбция здесь осуществляется за счет биоспецифп-ческого взаимодействия между молекулами, закрепленными на матрице, т. е. связанными в неподвижной фазе, и комплементарными к ним молекулами, подлежащими очистке или фракционированию, поступающими, а затем элюируемыми с подвижной фазой. Биоспеци-фическое взаимодействие отличается исключительной избирательностью, а зачастую и очень высокой степенью сродства между партнерами. Оно лежит в основе множества строго детерминированных процессов, протекающих в организме. В качестве примеров можно назвать взаимодействия между ферментами и их субстратами, кофакторами или ингибиторами, между гормонами и их рецепторами, между антигенами и специфическими для них антителами, между нуклеиновыми кислотами и специфическими белками, связывающимися с ними в процессе осуществления своих функций (полимераза.мп, нуклеазами, гистонами, регуляторными белками), а также между самими нуклеиновыми кислотами-матрицами и продуктами их транскрипции. Наконец, многие малые молекулы (витамины, жирные кнслоты и др.) специфически связываются со специальными транспортными белками. [c.339]

    Помимо очистки мРНК п белков, связываюш ихся с ДНК, для олиго((1Т)-целлюлозы в последние годы открылась новая важная область применения — в качестве матрицы и затравки для полимераз и обратных транскриптаз, ведущих соответствующие комплементарные синтезы нуклеиновых кислот in itro. [c.373]

    Как уже упоминалось, ПК в качестве лигандов могут обладать как групповой специфичностью (для белков хроматина, факторов управления трансляцией, нуклеаз и др.), так и индивидуальной (для индивидуальных мРНК, белков-регуляторов транскрипции и др.). Во втором случае на аффинном сорбенте должны быть закреплены вполне определенные участки генома. Это стало возмолшым после создания способов отбора и наработки в достаточных количествах строго идентичных фрагментов ДНК методами генной инженерии. В последнее время возникла еще одна область использования иммобилизованных НК — в качестве праймеров матричного синтеза. Эти приложения предъявляют разные требования к характеру фиксации НК на матрице. В первом случае расположение точек закрепления на молекуле НК может быть произвольным, во втором определенные и достаточно протяженные участки полинуклеотидной цепи должны быть свободны для комплементарного взаимодействия, а в третьем закрепление НК на матрице желательно осуществить лишь по одному определенному концу молекулы. Что же касается возможности реакций с активированными матрицами, то вдоль всей молекулы НК во множестве располагаются химически эквивалентные группы аминогруппы нуклеиновых оснований, гидроксилы сахаров и др. В особом положении находится только концевой остаток фосфорной кислоты или сахара. [c.387]

    В случае более коротких нитей НК их после предварительной сорбции дополнительно фиксируют на матрице УФ-облучением. Такая фиксация фактически означает образование ковалентных химических связей в ситуации, когда активация близко расположенных, но химически инертных групп происходит за счет поглощения световой энергии. Существенное отличие от ранее рассмотренных вариантов посадки НК иа химически активированные матрицы состоит в том, что НК облучается не в растворе, а иосле сорбции па целлЮ лозу. Это означает, что пришивание нроисходит в очень немногих точках, где соответствующие друг другу химические группы НК и матрицы во время сорбции случайно оказались достаточно сбли>ь"епы. Фиксированные таким образом молекулы НК значительно более эффективно ыогут обеспечить узнавание и комплементарное взаимо действие с другими молекулами НК или специфическими белками. [c.392]

    Каким образом клеткам удается достичь столь высокой степени точности в выборе нуж ного основания в процессах репликации и транскрипции, а также при спаривании кодона с антикодоном в процессе синтеза белка В ранних работах исследователи часто высказывали мнение, что специфичность спаривания оснований определяется исключительно образованием двух (или соответственно трех) водородных связей и стабилизацией за счет взаимодействия соседних участков спирали. Оказалось, однако, что свободная энергия образования пар оснований мала (гл. 2, разд. Г, 6), а дополнительная свободная энергия, обусловленная связыванием основания с концом уже существующей цепи, не в состоянии обеспечить специфичность спаривания. Исходя из современных энзимологических данных, можно предположить, что важную роль в обеспечении правильности спаривания играет сам фермент. РНК- и ДНК-полимеразы — достаточно крупные молекулы. Следовательно, связывающее место фермента может полностью окружить двойную спираль. Если это так, то нетрудно представить себе, что лроцесс выбора основания может протекать так, как это показано на рис. 15-5. На приведенном рисунке изображено гуаниновое основание матричной цепи молекулы ДНК, расположенное в месте наращивания комплементарной цепи (ДНК или РНК) с З -конца. Для образования правильной пары оснований соответствующий нуклеозидтрифосфат должен быть пристроен до того, как произойдет реакция замещения, в результате которой нуклеотид присоединится к растущей цепи. Предположим, что у фермента есть связывающие места для дезоксирибозного компонента матричного нуклеотида и для сахарного компонента включающегося нуклеозидтрифосфата, причем эти места расположены на строго оцределенном расстоянии друг от друга. Как показано на рис. 15-5, в каждом связывающем [c.212]

    Известно, что для инициации процесса репликации ДНК фага ФХ необходимо наличие в геноме фага специфического гена А. Недавно было показано, что этот ген детерминирует синтез белка с мол. весом 56 000 — специфической эндонуклеазы надрезающей вирусную цепь RF-формы, что необходимо для начала процесса репликации [209]. По-видимому, после появления такого разрыва стимулируется синтез небольшого участка РНК-затравки. Репликация ДНК протекает в большинстве случаев в двух направлениях (разд. Д,2), однако репликативная форма Ф X образуется, вероятно, только в одном направлении по механизму разматывающегося рулона (rolling ir le) [210]. В соответствии с этим механизмом [уравнение (15-9)], по мере того как вновь образующаяся цепь вирусной ДНК синтезируется вдоль комплементарной (минус) цепи-матрицы, исходная вирусная ДНК (плюс-цепь) вытеснется в виде одноцепочечного хвоста . [c.278]

    Какие еще белки кроме гистонов обнаруживаются в клеточных ядрах Методом электрофореза в полиакриламидном геле было установлено, что в ядрах клеток НеЬа содержится около 450 компонентов, большинство из которых присутствует в небольших количествах (<10 000 молекул в расчете на одну клетку) и не обнаруживается в цитоплазме [302]. К наиболее кислым белкам относится большое число ферментов, включая РНК-полимфазу. Кроме того, в ядрах содержатся 1) определенные репрессоры генов, в основном не идентифицированные, 2) бел ки, связывающие гормоны, и 3) многие другие белки [303]. Наряду с ядерными белками, которым уделяется обычно основное внимание, определенную роль в регуляции фенотипического выражения генов играет также мало исследованный класс небольших ядерных РНК. Молекулы этой РНК длиной от 65 до 200 нуклеотидов могут стимулировать транскрипцию специфических генов, связываясь с комплементарными участками ДНК. Таким образом, информация, транскрибированная с одного участка хромосомы, может оказывать влияние на процессы, протекающие на другом участке или на другой хромосоме [303а]. [c.304]

    На самом деле структура ДНК является еще более сложной, так как две составляющие ее полимерные спирали закручены в противоположном направлении иными словами, они антипараллельны. Если двигаться вдоль обеих спиралей в одном и том же направлении, то в одной из них связь между сахарными и фосфатными остатками будет -5, 3 - 5, 3 -5, 3 -, а в другой — -3, 5 -3, 5 -3, 5 -. Во время синтеза белка одна из цепей двойной спирали ДНК служит активным источником информации для клетки, являясь матрицей для образования так называемой информационной или матричной рибонуклеиновой кислоты (мРНК). При делении клетки обе нити двойной спирали выступают в роли матриц для синтеза комплементарных молекул ДНК. Таким образом, каждое дочернее ядро после деления содержит по паре нитей ДНК или по нескольку пар этих нитей, которые идентичны родительской ДНК. Этот процесс представлен схематически на рис. 27-6 и более подробно — на рис. 27-7. [c.485]


Смотреть страницы где упоминается термин Белки комплементарные: [c.19]    [c.117]    [c.136]    [c.463]    [c.116]    [c.169]    [c.184]    [c.215]    [c.262]    [c.269]    [c.320]    [c.326]    [c.327]    [c.327]    [c.461]    [c.587]    [c.587]    [c.236]    [c.231]    [c.231]   
Успехи стереохимии (1961) -- [ c.689 ]




ПОИСК







© 2025 chem21.info Реклама на сайте