Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты диссоциация

    Кислотно-основные свойства аминокислот могут быть выражены обычными уравнениями диссоциации вещества как кислоты и как основания, с отвечающими им константами. Например, для глицина [c.207]

    На примере ионизации цистеина, выбранного в качестве простой модели, можно проиллюстрировать, что диссоциация на поверхности белка отражает сложное взаимодействие мономерных остатков аминокислот. Схему ионизации можно представить следующим образом  [c.42]


    Характер диссоциации аминокислот зависит от условий среды. В кислой среде при избытке ионов водорода (pH < 7) биполярные ионы аминокислот превращаются в их аммониевые катионы в щелочной среде при избытке гидроксильных ионов (pH > 7) биполярные ионы переходят в анионы [c.282]

    Протон, освобождающийся при диссоциации карбоксильной группы какой-либо а-аминокислоты, связывается ее аминогруппой, и в результате внутримолекулярной нейтрализации кислотной и основной групп образуются биполярные ионы, или цвиттерионы  [c.350]

    Диссоциация и реакции а-Аминокислот Диссоциация [c.210]

    Изоэлектрическая точка белков. Молекула белка имеет электрический заряд, обусловленный почти исключительно диссоциацией ионогенных групп —СООН и —КНз. Эти группы принадлежат концевым аминокислотам, т. е. находящимся на концах полипептидных цепочек, а также дикарбоновым и диаминовым аминокислотам, расположенным в середине цепочки. [c.187]

    Ион водорода, отщепляющийся при диссоциации от карбокси. аминокислоты, может переходить к ее аминогруппе с образовани< аммониевой группировки. Таким образом, аминокислоты суш ствуют и вступают в реакции также в виде биполярны ионов (внутренних солей)  [c.498]

    Диссоциация всех аминокислот в растворе осуществляется по двум возможных путям  [c.32]

    Полиэлектролиты. Если звенья макромолекулы содержат боковые ионогенные группы, то полимеры проявляют своеобразные-электрические, конфигурационные и гидродинамические свойства. Такие полимеры называют полиэлектролитами. К ним относятся поликислоты (полиметакриловая, нуклеиновые кислоты и др.) полиоснования полиамфолиты. Полиамфолиты содержат кислотные-и основные группы в одной макромолекуле. Это белки и синтетические полипептиды. Они построены из аминокислот и содержат основные (ЫНзОН) и кислотные (—СООН) группы, которые располагаются не только на концах цепей, но и в боковых ответвлениях. Раствор каждого полиамфолита в зависнмости от его состава имеет определенное значение pH, при котором сумма положительных и отрицательных зарядов в цепи равны. Это значение pH называется изоэлектрической точкой (ИЭТ). При pH ниже ИЭТ в цепи преобладают положительные заряды из-за подавления диссоциации СООН-групп. При достаточно низком pH полиамфолит превращается в полиоснование. При pH выще ИЭТ полиамфолит постепенно переходит в поликислоту. [c.287]

    Замена атома кислорода в серине на атом серы обусловливает диссоциацию протона образуется аминокислота цистеин. [c.29]


    При разделении аминокислот и пептидов обычно пользуются трехкомпонентными системами к насыщенному водой органическому растворителю добавляют кислоты, основания, некоторые спирты, кетоны и др. Это приводит, во-первых, к повышению растворимости воды в подвижной фазе (увеличению гидрофильности системы), во-вторых, к изменению диссоциации кислых и основных групп разделяемых соединений. Вследствие этого кислоты замедляют движение оснований, а основания — кислот. [c.126]

    Эта аминокислота содержит гидроксильную груяяу с рК = 10,07, способную к диссоциации. Близость строения фенилаланина и тирозина обусловливает способность первого превращаться во второй в организме. Отсюда следует, что именно фсннлалании, а не тирозин, является незаменимой аминокислотой. Эти аминокислоты — предшественники в синтезе гормона адреналина. [c.29]

    Иногда, например при исследовании белков, оказывается необходимым создавать условия, в которых аминокислота при диссоциации дает одинаковую концентрацию как положительных (ЫН КСООН), так и отрицательных (NH2R 00 ) ионов. В чистой воде такое условие невыполнимо, так как константы диссоциации обеих ступеней неодинаковы. Чтобы одну ступень дисссщиации усилить, а другую — подавить, необходимо создать в растворе соответствующую концентрацию водородных ионов, добанляя либо кислоту, либо основание. Значение pH, при котором амфолит образует одинаковые концентрации положительных и отрицательных ионов, называется изоэлектрической точкой. В изоэлектрической точке, очевидно, соблюдается условие [c.511]

    Следовательно, диссоциация протекает почти исключительно по верхнему пути на схеме (7.17) это справедливо не для всех аминокислот. [c.217]

    Преимущество того или другого типа диссоциации некоторых гидроксидов зависит от положения соответствующего элемента в периодической системе Д. И. Менделеева. А. проявляют также органические соединения, в состав молекул которых входят группы противоположного характера, например аминокислоты. [c.25]

    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    Энтропия существенно зависит от агрегатного состояния вещества. Ее значение наименьшее для твердого тела. При плавлении происходит скачкообразное возрастание энтропии, поскольку частицы приобретают возможность перемещаться в пространстве и вращаться, т. е. резко возрастает число возможных микроскопических состояний системы. Еще менее упорядоченным состоянием является газ, и испарение сопровождается существенным ростом энтропии вещества. Изменением энтропии сопровождаются и любые другие процессы, если они сопровождаются изменением упорядоченности в системе. Так, энтропия возрастает при диссоциации частиц, т. е. при образовании двух или нескольких частиц из одной. Например, при превращении 1 моль Нг в атомы Н при комнатной температуре энтропия возрастает на 230 Дж/К. Образование полимера из мономеров, например образование белка из аминокислот, сопровождается понижением энтропии (возникает более упорядоченная система). Высоко упорядоченной системой является живая клетка, поэтому ее энтропия много ниже энтропии составляющих ее веществ, взятых в отдельности. [c.159]

    При избытке водородных ионов все свободные аминогруппы белка превращаются в положительно заряженные аммониевые группировки (ср. с диссоциацией аминокислот, стр. 282) белковые молекулы в этих условиях являются катионами и при пропускании тока через кислый раствор белка переносятся к катоду. При избытке же гидроксильных ионов диссоциируют все свободные карбоксильные группы белка, молекулы его приобретают отрицательные заряды, т. е. становятся анионами, и под действием тока переносятся к аноду. [c.295]


    Для амфотерных гидроксидов это значение pH, соответствующее изоэлектрической точ е, определяется соотношением констант их диссоциации по кислотному и основному типам. В молекулах белков содержится больщое число различных кислотных и основных групп в боковых цепях образующих их аминокислот, а также концевые группы — КНз и —СООН, имеющие различные значения констант диссоциации. Поэтому ионное состояние белковой молекулы в растворе с некоторым значением pH определяется сложным ионизационным равновесием различных ионогенных групп. [c.252]

    Эта точка характеризуется минимумом диссоциации и растворимости. Примером диполярных ионов могут служить внутренние соли аминокислот, образующиеся в результате реакции  [c.48]

    Изучение аминокислот значительно упрощается, если рассматривать ионы типа NHiR OOH как двухосновные кислоты, первая ступень диссоциации которых — это диссоциация карбоксильной группы  [c.510]

    Для Приближенного расчета констант диссоциации аминокислот пользуются уравнениями (XVIII, 93), заменив в них активности концентрациями. После логарифмирования указанных выражений получим  [c.510]

    Изоэлектрнческие точки а-амино-а-карбоновых кислот лежат около pH = 6, так как константы диссоциации карбоксильной группы несколь ко выше константы диссоциации аминной группы. Введение в амино кислоту дополнительных функциональных групп — кислых, основных ли только полярных смещает изоэлектрическую точку (см. табл. 4) В кислой среде в аминокислотах подавляется диссоциация карбоксиль ной группы и соединение ведет себя как амин. В щелочной среде подав ляется диссоциация аммонийной группы и проявляются кислые свойсгва вещества. [c.459]

    Биоорганическая химия сблизила и иереилела практическую деятельность химика-органика и биохимика. В данной главе авторы постарались показать взаимосвязи между органической химией и биохимией, с одной стороны, и химией белка и медицинской химией (фармакологией) —с другой. Как основной используется химический подход, н механизм биохимических реакций описывается в сравнении с их синтетическими моделями. Органический синтез и биосинтез пептидной и фосфоэфирной связи (гл. 3) рассматриваются параллельно таким образом выявляется удивительный ряд сходных закономерностей. Каждая аминокислота представлена как отдельное химическое соединение с уникальным набором свойств. Способность аминокислот к диссоциации обсуждается в терминах, принятых в органической химии для кислот и оснований, и фундаментальные свойства аминокислот подаются читателю так, чтобы не было впечатления, будто аминокислота — это нечто совершенно особенное. Химия аминокислот представлена как часть курса органической химии (реакции ал-килирования, ацилирования и т. п.), а сведения по биохимии рассмотрены с химической точки зрения. [c.26]

    Учитывая эти соображения, можно разобраться в поведении аминокислот нри диссоциации. Например, замещение а-протона в глицине на метильную группу должно лишь незначительно повлиять на рКа карбоксильной группы. Это действительно выполняется для аланина (табл. 2.1), а также для других аминокислот с нейтральными боковыми группами. Однако в р-аланине, в котором аминогруппа отделена от карбоксильной уже двумя углеродными атомами, эти две функциональные группы оказывают друг на друга меньшее влияние и значение рКа попадает в интервал между значегшями рКа глицина и рКа уксусной кислоты. рКа карбоксигруппы нейромедиатора ГАМК, в котором амино- и карбокснгрупны отделены тремя углеродными атомами, близко по значению таковой в уксусной кислоте. [c.40]

    При изучении кинетики анаэробной реакции р-хлоралани-на с оксидазой В-аминокислот было найдено, что цианид-анионы ускоряют реакцию гидрирования фермента при окислении субстрата [16]. Исходя из данных табл. 18, найти значение константы диссоциации комплекса фермент-активатор и величину максимальной скорости ферментативной реакции при избытке цианид-ионов. [c.97]

    В ледяной уксусной кислоте диссоциация карбоксильной группы аминокислот полностью подавляется, что позволяет тифовать аминофуппу хлорной кислотой. [c.261]

    Заряд на макромолекулах белка в водных растворах возникает обычно в результате диссоциации ионогенных групп. Белковые молекулы как продукты конденсации аминокислот содержат основные группы ЫНо и кислотные СООН. Такие соединения являются амфолитами, т. е. они способны диссоциировать и по кислотному, и по основному типу, в зависимости от pH среды. В сильнокислой среде белок ведет себя как основание его молекулы диссоциируют за счет групп N4-12 по основному типу HONH ,-R- СООН ЫН , Р-СООН ++ ОН  [c.206]

    Аминокислоты — амфотерные соединения, поэтсшу они могут образовывать соли как с кислотами, так и с основаниями. Кислоты подавляют диссоциацию карбоксильной группы  [c.82]

    Аминокислоты и белки обладают амфотерным характером. При диссоциации как свободных аминогрупп, так и свободных карбоксильных групп они приобретают заряды в кислой срсдс — положительный, в щелочной —отрицательный. [c.5]

    Аминокислота, содержащая одну аминогруппу и одну карбоксильную группировку, имеет два значения рКи, соответстпующих диссоциации групп [c.292]

    Активные группы. — Белки являются характерными амфотер-ными соединениями. В нейтральном растворе основные и карбоксильные группы большей частью ионизированы, как это происходит с биполярными ионами аминокислот. В изоэлектрической точке диссоциация кислотных и основных групп одинакова, растворимость и электрофоретическая подвижность минимальна. Ниже приведена формула гипотетического гептапеп гида, написанная по общепринятым правилам слева аминная концевая группа, справа — карбоксильная  [c.688]

    Аминокислоты в растворе находятся в виде цвиттерионов. Их заряд, определяемый степенью диссоциации карбоксильных, аминогрупп и боковых радикалов, зависит от pH раствора. Используя метод электрофореза на бумаге, удается провести разделение определенных групп аминокислот. Сложные смеси аминокислот могут быть разделены с помощью электрофорезов, проводимых при разных значениях pH во взаимноперпендикулярных направлениях или комбинацией электрофореза и хроматографии. [c.137]

    Соответствует pH р-ра, прн к-ром одинаковы концентрации положительно и отрицательно заряженных форм (напр., для аминокислот) или числа ионизированных кислотных и основных групп (напр., для макромолекул белков и др. полиамфолитов). Значение pH в ИЭТ (обозначают р1, нли рн,) определяется величинами констант диссоциации кислотной и основной ф-ций  [c.208]


Смотреть страницы где упоминается термин Аминокислоты диссоциация: [c.511]    [c.210]    [c.39]    [c.186]    [c.210]    [c.241]    [c.304]    [c.35]   
Введение в электрохимию (1951) -- [ c.541 ]

Биохимия аминокислот (1961) -- [ c.30 , c.33 ]

Аккумулятор знаний по химии (1977) -- [ c.210 ]

Аккумулятор знаний по химии (1985) -- [ c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты постоянная диссоциации

Аминокислоты, диссоциация функциональных групп

Диссоциации константа аминокислот и таблица значений

Диссоциация аминокислот ионогенных веществ

Диссоциация аминокислот пептидов

Диссоциация аминокислот степень

Кислотно-основное равновесие при диссоциации аминокислот

Константы диссоциации алифатических аминокислот, таблица

Константы диссоциации аминокислот

Константы диссоциации аминокислот, таблица

Константы диссоциации и значения pH в изоэлектрических точках аминокислот в воде при

Постоянные диссоциации аминокислот и пептидов

Теплота диссоциации аминокислот и электролитов



© 2025 chem21.info Реклама на сайте