Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение воздуха установки с регенераторами

Рис. 4.4. Кислородный цех с тремя установками БР-1 а — план б — разрез по А—Б I — блоки разделения воздуха БР-1 1 — подогреватели воздуха 3 — криптоновые блоки 4 — механизмы переключения клапанов регенераторов 5 — влагоотделители-фильтры 6 — щиты приборов криптонового блока 7 — пульты дистанционного управления блоком разделения 8 — щиты приборов блока разделения 9 — щиты управления турбодетандерами 10 — турбодетандеры II — турбокомпрессоры воздушные производительностью по 84 ООО м /ч 12 — пульты управления турбокомпрессорами 13 — станции управления и защиты синхронного электродвигателя турбокомпрессора и двигателя постоянного тока маслонасоса 14 — щит контрольно-измерительных приборов турбокомпрессора. Рис. 4.4. Кислородный цех с тремя установками БР-1 а — план б — разрез по А—Б I — <a href="/info/718589">блоки разделения воздуха</a> БР-1 1 — <a href="/info/34078">подогреватели воздуха</a> 3 — криптоновые блоки 4 — механизмы <a href="/info/844953">переключения клапанов регенераторов</a> 5 — <a href="/info/1424582">влагоотделители-фильтры</a> 6 — <a href="/info/1703565">щиты приборов</a> криптонового блока 7 — пульты <a href="/info/390147">дистанционного управления</a> <a href="/info/700337">блоком разделения</a> 8 — <a href="/info/1703565">щиты приборов</a> <a href="/info/700337">блока разделения</a> 9 — <a href="/info/904137">щиты управления</a> турбодетандерами 10 — турбодетандеры II — <a href="/info/844350">турбокомпрессоры воздушные</a> производительностью по 84 ООО м /ч 12 — <a href="/info/712926">пульты управления</a> турбокомпрессорами 13 — <a href="/info/1069251">станции управления</a> и защиты <a href="/info/912998">синхронного электродвигателя</a> турбокомпрессора и <a href="/info/512756">двигателя постоянного тока</a> <a href="/info/1457423">маслонасоса</a> 14 — щит <a href="/info/121862">контрольно-измерительных приборов</a> турбокомпрессора.

Рис. 117. Схема установки для разделения воздуха с регенераторами и турбодетандером (с двумя давлениями) Рис. 117. <a href="/info/13990">Схема установки</a> для <a href="/info/125253">разделения воздуха</a> с регенераторами и турбодетандером (с двумя давлениями)
Рис. 4.31. Схема узла регенераторов блока разделения воздуха установки Рис. 4.31. <a href="/info/905045">Схема узла</a> <a href="/info/885216">регенераторов блока разделения воздуха</a> установки
Рис. 4.33. Схема кислородных регенераторов блока разделения воздуха установки К-И-1 Рис. 4.33. <a href="/info/158269">Схема кислородных</a> <a href="/info/885216">регенераторов блока разделения воздуха</a> установки К-И-1
Рис. 494. Принципиальная схема установки с регенераторами для разделения воздуха - Рис. 494. <a href="/info/844583">Принципиальная схема установки</a> с регенераторами для разделения воздуха -
    Предельно допустимые концентрации вредных примесей в воздухе в месте его забора следующие ацетилена и других углеводородов ацетиленового ряда— 0,25 см ]м -, при наличии в воздухоразделительной установке аппарата для каталитической очистки воздуха от ацетилена эта норма может быть увеличена до 1 а для блоков разделения воздуха с регенераторами с каменной на- [c.154]

    Предельно допустимые концентрации вредных примесей в воздухе в месте его забора следующие ацетилена и других углеводородов ацетиленового ряда— 0,25 см ]м при наличии в воздухоразделительной установке аппарата для каталитической очистки воздуха от ацетилена эта норма может быть увеличена до 1 см ]м , а для блоков разделения воздуха с регенераторами с каменной насадкой—до 0,4 M xP аммиака 20 мг окислов азота 1 см 1м сернистых соединений 20 мг/м двуокиси углерода 400 см м . [c.154]


    Установка для разделения воздуха с регенераторами и турбодетандером (с двумя давлениями). На рис. 117 изображена упрощенная схема современной отечественной установки для разделения 20 ООО м воздуха в час. В этой установке холод получается при помощи турбодетандера и холодильного цикла высокого давления. [c.304]

    В Дортмунде (ФРГ) на установке разделения воздуха, принадлежащей фирме Кнаизак-Грисхайм , произошел сильный взрыв, в результате которого погибли 13 человек и 15 человек были серьезно ранены. Установка типа Линде-Френкль была построена фирмой Линде . На установке получали 50— 57 мУмин технического кислорода чистотой 92—99%, 3,3 м мин газообразного кислорода чистотой 99,5% и 3,3 м мин жидкого кислорода чистотой 99,5%. Вся аппаратура была изолирована шлаковатой. Оборудование холодного блока было установлено на плите нз сосновых досок, покрытых оцинкованным железом, тщательно подогнанным и заделанным по краям. За пять дней до аварии агрегат подвергся техническому осмотру, после чего установка была пущена по обычной схеме. Вскоре после пуска была обнаружена течь в нижней части азотных регенераторов. Открыв один из люков холодного блока и временно. удалив часть изоляции (шлаковаты) для доступа к фланцу работники цеха устранили течь. Однако яоказатели работы агрегата не соответствовали требуемым. Агрегат вновь был остановлен. Проверка показала дефект в поршневых кольцах третьей ступени. После замены колец выработку кислорода возобновили, и мощность установки достигла нормального уровня. Через некоторое время обнаружилась течь в зоне кислородных регенераторов. Ко времени взрыва ремонтные работы, связанные с этой течью, еще не были закончены и в цехе находился обслуживающий персонал. Незадолго до взрыва загорелась уплотняющая прокладка в нижней части кожуха холодного блока. Была сделана попытка потушить пламя ручными огнетушителями, ио в это время произошел сильный взрыв. [c.375]

    В установках для получения чистых продуктов разделения воздуха применяют регенераторы со встроенными змеевиками и насадкой из камней. Общий вид регенератора такой конструкции показан на фиг. 20. [c.345]

    В установках для получения чистых продуктов разделения воздуха применяют регенераторы со встроенными змеевиками и насадкой из камней (рис. 18). [c.343]

    Технологическая схема блока разделения воздуха установки БР-6 представлена на рис. 30. Сжатый в турбокомпрессоре воздух поступает в азотный 1 и кислородный 2 регенераторы. Здесь воздух охлаждается, отдавая тепло каменной насадке и чистому азоту, проходящему внутри трубок змеевиков. При этом на насадке вымерзают влага и двуокись углерода, содержащиеся в воздухе. Цикл работы регенераторов продолжается 1080 сек (по 540 сек на прямое и обратное дутье). Момент переключения азотных и кислородных регенераторов смещен на /4 продолжительности цикла. Чистый азот идет внутри трубок змеевика непрерывно, независимо от того, прямой или обратный поток движется по насадке регенераторов. Из регенераторов охлажденный воздух поступает на разделение в нижнюю ректификационную колонну 10. [c.42]

    При разделении воздуха с получением газообразных кислорода и азота наиболее выгодными являются цикл с двукратным дросселированием и предварительным охлаждением и цикл среднего давления с отдачей внешней работы. В небольших установках применяют циклы с простым дросселированием. Цикл низкого давления с регенераторами не дает чистых продуктов разделения и применяется при получении кислорода для технологических нужд. [c.559]

    На рис. ХУ1-14 показана принципиальная схема установки для разделения воздуха с целью получения технического кислорода 98% О а). Здесь 95% исходного воздуха сжимается в турбокомпрессоре до давления 0,6—0,65 МПа и после охлаждения в регенераторах / и 2 до температуры насыщения направляется в нижнюю колонну аппарата двойной ректификации 3. Остальные 5% исходного воздуха сжимаются в поршневом компрессоре до 12—15 МПа, последовательно охлаждаются в предварительных теплообменниках (на схеме не показаны), в теплообменниках 4 и 5, и после дросселирования (6) также поступают при температуре насыщения в нижнюю колонну. Теплообменник 5 охлаждается азотом, отбираемым под крышкой конденсатора 7. Уходящий отсюда азот расширяется в турбодетандере 8, частично уходит на охлаждение [c.753]

    Для получения азота и кислорода разделением воздуха в промышленности применяют главным образом установки с дросселированием сжатого воздуха (в один или два цикла) и с предварительным аммиачным охлаждением, а также установки высокого и низкого давления с регенераторами и турбодетандерами. Различные установки для производства азота и кислорода отличаются друг от друга главным образом способами сжижения воздуха, схемой ректификации, способом очистки воздуха от двуокиси углерода и паров воды, а также конструктивным оформлением. [c.213]


    Регенераторы. В кислородных установках регенераторы применяются для охлаждения основного потока воздуха, идущего на разделение в ректификационную колонну, а также для очистки его от двуокиси углерода и от влаги. Для непрерывной работы требуются два аппарата. Регенераторы представляют собой цилиндрические сдвоенные аппараты (рис. 90), заполненные насадкой. В одном из этих аппаратов уходящие из системы газы отдают свое тепло (или холод) насадке, в это же время в другом регенераторе газы, поступающие в систему, нагреваются (или охлаждаются), соприкасаясь с горячей (или холодной) насадкой. Периодический ввод холодного и теплого газа в регенераторы (через 0,5—3 мин) осуществляется автоматически при помощи переключающих механизмов. [c.216]

    Проследим процесс разделения воздуха на кислородной установке. Воздух из атмосферы пропускают через ситчатый фильтр, сжимают и охлаждают. Затем с помощью ряда сепараторов, теплообменников и регенераторов воздух очищают от примесей. При этом он охлаждается за счет холода сбросного потока, который в свою очередь нагревается до нормальной температуры. Очищенный воздух дросселируют, в результате чего за счет эффекта Джоуля — Томпсона он охлаждается до температуры сжижения. По другой схеме поток воздуха разделяют. Одну часть направляют на дросселирование, а другую используют для вращения турбины или поршневой машины. Частично сжиженный этими двумя способами воздух направляют в ректификационную колонну. Сверху отбирают газ, сильно обогащенный азотом (т. кип. —196,6 °С), а снизу жидкость, сильно обогащенную кислородом (т. кип. —182,8 °С). [c.49]

    Для получения жидких продуктов применяют установки одного или двух давлений. В установках одного давления (рис. 66) для получения жидкого кислорода и получения холода подается один поток воздуха от компрессора. В установках двух давлений для увеличения холодопроизводительности применяют дополнительный воздушный или циркуляционный азотный цикл. Холодопроизводительность установки, а также выход жидкого продукта в основном зависят от давления воздуха перед блоком разделения. Холодопроизводительность установки высокого давления такова, что почти весь кислород, содержащийся в воздухе, выдается в жидком виде. От давления воздуха на входе в блок зависят количество детандеров в установке, способ очистки воздуха от двуокиси углерода и влаги (в установках низкого давления вымораживанием на насадке регенераторов среднего и высокого давления — химическим и адсорбционным методом), тип применяемых машин. [c.57]

    Распределение воздуха на потоки низкого и высокого давления. В установках двух давлений подвергающийся разделению воздух сжимается компрессором до низкого давления (0,65 МПа), после чего большая часть воздуха поступает в регенераторы. Остальная часть воздуха очищается от двуокиси углерода в щелочном скруббере и сжимается до высокого давления в компрессоре. Поскольку воздух высокого давления служит для покрытия потерь холода в установке, его количество уменьшается по мере роста производительности установки. Например, в установке К-0,3 количество воздуха высокого давления составляет 26 % общего количества перерабатываемого воздуха, в установках КАр-3,6 и К-3,6 — 9,5 и 4 % соответственно. [c.126]

    Однако каждый метод, применяемый для обеспечения незабиваемости регенераторов, имеет свои преимущества. При методе тройного дутья регенераторы с металлической насадкой позволяют уменьшить объем и массу насадки на единицу теплопередающей поверхности по сравнению с регенераторами, заполненными базальтом и встроенными змеевиками, при- одинаковом количестве перерабатываемого воздуха. Вместе с тем регенераторы с каменной насадкой и встроенными змеевиками, имеющие значительно большие размеры, позволяют увеличить длительность цикла переключения и получать чистые продукты разделения воздуха. Поэтому выбор того или иного метода, обеспечивающего незабиваемость регенераторов, определяется назначением установки. [c.128]

    Взрывобезопасная работа блока разделения обеспечивается установкой газовых адсорберов 24 на всем потоке воздуха, выходящего из регенераторов, наличием очистительного циркуляционного контура с переключающимися адсорберами 18 на потоке жидкого кислорода, организацией протока кипящей жидкости из каждого конденсатора, а также выводом из блока разделения наиболее загрязненной жидкости. [c.141]

    Компоновка оборудования установки комбинированная блок регенераторов размещается в здании, а блок разделения воздуха —вне здания. [c.4]

    Введение регенераторов, в технику разделения воздуха при низких температурах — это один из результатов постоянного стремления к уменьшению потерь от необратимости и снижению удельного расхода энергии. В применении к теплообмену уменьшение потерь от необратимости может быть достигнуто, как известно, проведением теплопередачи при возможно меньших значениях Д7 . Действительно в менее экономичных установках, работающих по процессу высокого давления, разность температур в холодной зоне теплообменника достигает нескольких десятков градусов. [c.106]

    За последние годы и в СССР, и за рубежом разработаны многочисленные системы автоматизации как агрегатов разделения воздуха в целом, так и входящих в нихэле1ментов (регенераторов, ректификационных колонн, турбодетандеров и др.). Описание и анализ таких систем выходят за рамки этой книги. Поэтому мы ограничимся рассмотрением только некоторых общих принципов автоматического регулирования режима применительно к установке низкого давления. [c.366]

    В установках высокого и среднего давления нет прямой зависимости осушки и очистки воздуха от режима работы блока разделения. В установках с регенераторами, наоборот, качество очистки и осушки воздуха определяется тепловым режимом блока разделения. [c.254]

    Охлаждение воздуха низкого давления, очистка его от влаги и двуокиси углерода производится в азотных регенераторах потоком отходяш,его азота. Воздух засасывается через пылеулавливающий фильтр 1 двухступенчатым, двойного действия угловым воздушным компрессором 2 типа 205 ВП-30/8, производительностью 1800 м ч. При производительности установки 300 м ч кислорода в блок разделения поступает 1800 м ч воздуха (при 20 °С и 760 мм рт. ст.), в том числе воздуха низкого давления 1320 м ч и высокого—480 м ч. Избыточное давление воздуха около 6 кгс см . Сжатие части воздуха до избыточного давления 90 кгс см (при установившемся процессе) или до 200 кгс см (в период пуска) производится в дожимающем вертикальном четырехступенчатом двухрядном компрессоре 12 двойного действия типа КД-8 5-220. Из компрессора 2 воздух низкого давления через холодильник 3 и масло-влагоотделитель 4 поступает в дополнительный масло-влагоотделитель 5 и фильтры 6 для очистки от капельного масла и его паров, а затем через ресивер 7 направляется в азотные регенераторы. После охлаждения в регенераторах воздух поступает в куб нижней ректификационной колонны 20 блока разделения воздуха. [c.182]

    Дополнительный блок криптона и технического кислорода установки БР-1 включается в работу за 24 ч это может быть проведено только после установления нормального режима для основного блока разделения воздуха. При включении этого блока происходит некоторое перераспределение потоков в регенераторах, в частности уменьшается нагрузка на кислородные регенераторы, так как отбор технического кислорода производится через предусмотренный для него теплообменник. В азотных регенераторах увеличивается количество воздуха прямого потока, а часть петлевого потока пропускается через весь регенератор и затем поступает в теплообменник технического кислорода. В теплообменник технического кислорода на 1 м /ч кислорода необходимо подавать 1 м ч воздуха низкого давления и 2 м ч высокого давления. [c.631]

    Перед включением блока криптона и технического кислорода подачу воздуха в основной блок разделения воздуха прекращают на короткое время для установки заглушек на перепускных клапанах азотных регенераторов. Это необходимо для того, чтобы выбрасываемый при переключении регенераторов остаточный воздух, содержащий влагу, не попадал в теплообменник технического кислорода и не вызывал его забивки льдом. Когда на выходе из теплообменника температура отходящего технического кислорода начнет понижаться, в межтрубное пространство теплообменника подают петлевой воздух, поддерживая недорекуперацию на теплом конце теплообменника в пределах 8—10 град. Постепенно отбор технического кислорода увеличивают до максимального (500 м ч) и включают кислородный насос в порядке, установленном инструкцией. [c.632]

    Применение цикла одного низкого давления (моно-цикла) в установках для получения газообразных продуктов разделения воздуха открыло большие возможности для создания агрегатов высокой производительности. Стоимость кислорода, получаемого на таких установках, настолько снизилась, что стало рентабельным использование его при получении чугуна, стали, многих продуктов химической промышленности и т. д. Таким образом, можно сказать, что в результате осуществления указанного холодильного цикла с применением высокоэффективных турбокомпрессоров и турбодетандеров, регенераторов, а также усовершенствования ряда других аппаратов удалось достигнуть современных масштабов промышленного производства кислорода, азота и аргона. [c.82]

    Сборник содержит результаты исследований по оценке эффективности турбодетандеров в крупных кислородных установках, по теплоотдаче и гидравлическому сопротивлению в регенераторах с насыпными насадками установок разделения воздуха. [c.2]

    Комплект поставки бло1к разделения воздуха (технологическое оборудование для разделения воздуха) блок регенераторов (технологическое оборудование для очистки и охлаждения воздуха) турбодетандерные агрегаты (два турбодетандера с электродвигателями и арматура) блок центробежных насосов (два центробеж ных насоса и арматура) система контроля и управления вне-блоч ные аппараты, арматура и трубопроводы запасные узлы и детали защитный кожух (для установки КААр-32-11). [c.8]

    Внутриблочные аппараты и коммуникации изготовляются из хладостойких сталей Х14Г14НЗТ и Х18Н9Т. Размеры установки в плане 24 х Х 12 м, высота 22 м. Технологическая схема блока разделения воздуха установки БР-2М показана на рис. 40. Сжатый в турбокомпрессоре воздух поступает в кислородные 1 (с каменной насадкой и встроенным в нее змеевиками) и азотные 2 (с насадкой из алюминиевой ленты) регенераторы, охлаждается, очищается от влаги и двуокиси углерода и направляется в нижнюю ректификационную колонну 6. [c.53]

    Регенераторы холода показаны на рис. 1Х-44. Схема прямоточной работы этих регенераторов с установкой для разделения воздуха на компоненты дана на рис. 1Х-45. Принцип их действия тот же, что и регенераторов теплоты в мартеновских печах, т. е. через них периодически проходят воздух и холодные продукты его разделения — азот и кислород. Цикл меняется каждые 1—2 мин. Аппараты заполнены спиралями гофрированной тонкой (толщина 0,4 мм) ленты (алюминиевой или медной). Поверхность такой насадки (рис. 1Х-46) 1000—3200 на 1 м объема регелератора, а сопротивление движению газов незначительное (несколько сот миллиметров водяного столба). Во многих установках вместо спиралей алюминиевой ленты используется мелкий гравий. [c.390]

    В установке применены регенераторы /, 2 новой конструкции с насыпной каменной базальтовой насадкой и встроенными змеевиками для получения чистого азота и технического кислорода. Для того чтобы регенераторы не замерзали, часть охлажденного воздуха выводится из средней части регенераторов в дальнейшем этот воздух доохлаждается и очищается от углекислоты в предвымораживателях. 9 и вымораживателях 4. Разделение воздуха происходит в колоннах 9, 10 аппарата двукратной ректификации. [c.431]

    Установка состоит из регенератора-подогревателя и реактора, разделенных пережимом. К регенератору подведены отопительный газ и воздух. Разогрев теплоносителя — зпнтер-корундовых шариков размером 6—12 мм — осуществляется за счет выжигания отложений кокса на теплоносителе. [c.212]

    Установка Кт-12 является одним из наиболее современных и экономичных агрегатов для производства технологического кислорода. Существует несколько модификаций этой установки. Наиболее новыми из них являются К-11-1, КтКАр-12 КтК-12-1 КтА-12-2. Ббльшая эффективность установок разделения воздуха достигается повышением коэффициента полезного действия турбокомпрессоров и понижением давления воздуха на входе в регенераторы. Это достигается при уменьшении гидравлических сопротивлений на пути прямого и обратного газовых потоков. [c.136]

    Регенераторы целесообразно ставить на потоке больших объемов воздуха низкого давления (не выше 5-f-6 кгс1см ). Поэтому регенераторы применяются в средних и крупных воздухоразделительных установках производительностью 1000 м 1ч кислорода и более, работающих с использованием воздуха низкого давления. Для обеспечения непрерывности процесса разделения воздуха на потоке каждого из обратных газов (кислорода и азота) устанавливают не менее двух регенераторов схема их работы показана на рис. 175. Если, например, открыты клапаны 1 п 2, го через левый регенератор проходит поток сжатого воздуха из турбокомпрессора и охлаждается от соприкосновения с холодной насадкой. За период теплого дутья температура проходящего воздуха понижается с плюс 20—30 С до минус 160—170 °С. Насадка регенератора в этот период несколько подогревается и имеет в направлении к холодному концу реге- [c.434]

    Пуск установки. Пуск начинают с охлаждения теплообменников, нижней колонны, азотных регенераторов и изоляции блока разделения воздуха высокого давления. Для ускорения пуска поток этого воздуха должен быть максимальным. Предварительно пускают аммиачную установку и охлаждают аммиачные теплообменники. Очищенный от СОз в скрубберах воздух высокого давления подается в блок разделения через предварительный и аммиачный теплообменники в аммиачном теплообменнике влага воздуха вымерзает. Затем через воздушный дроссельный вентиль охлажденный воздух под избыточным давлением 4,5—5 кгс см поступает в нижнюю колонну, откуда через конденсатор и отделитель жидкости направляется в турбодетандер. Часть воздуха высокого давления после дроссельного вентиля отбирается через пусковой обводной вентиль и также через отделитель жидкости подается в турбодетандер, минуя нижнюю колонну. Воздух, расширившийся до 0,2—0,3 кгс1см и охлажденный в турбодетандере, отводится в атмосферу частично через аммиачный и воздушный теплообменники, а частично через азотные регенераторы. [c.618]

    В установке низкого давления (рис. 4.25) весь воздух, подаваемый турбокомпрессором, пройдя концевой холодильник, поступает под избыточным давлением 5—6 кгс1см- в кислородные 1 и азотные 2 регенераторы блока разделения, где охлаждается отходящими кислородом и азотом. Основное количество воздуха после регенераторов поступает в нижнюю колонну. Около 20% воздуха после регенераторов отводится в турбодетандер 4 для получения холода, компенсирующего холодопотери. В турбодетандере воздух [c.186]

    Примером конструкции прямотрубного (кожухотрубного) теплообменного аппарата может служить теплообменник-выморажи-ватель СОг блока разделения установки АКт-16-1 (рис. 8.5). Он изготовлен из нержавеющей стали Х18Н10Т трубки 10X1 мм длиной около 6000 мм количество трубок 2251 шт. По трубкам проходит воздух в турбодетандер между трубками, снабженными поперечными перегородками, идет петлевой воздух из регенератора [c.434]

    В воздухоразделительных установках регенераторы выполняют ту же роль, что и теплообменники, т. е. передают тепло от поступающего в воздухоразделительный аппарат воздуха продуктам его разделения, выходящим из аппарата. Но наряду с этим регенера- [c.437]

    Адсорбция ацетилена силикагелем из воздуха в газовой фазе при низких температурах. Способ был разработан и испытан в 1938 г. К. А. Лобашовым и Е. М. Спектор применительно к установкам высокого давления. Очистка от ацетилена проводилась при минус 119—минус 126 °С и давлении 52—70 кгс см . В последующем способ очистки в газовой фазе нашел применение (при более низких давлениях и соответствующих им температурах) в газовых силикагелевых адсорберах. Его применяют также в установках низкого давления для очистки прямого и петлевого потоков воздуха после регенераторов. Преимуществом данного способа по сравнению с адсорбцией ацетилена из жидкого воздуха (на потоке кубовой жидкости) является то, что в данном случае весь воздух очищается от ацетилена и обеспечивается защита всех основных аппаратов блока разделения. Размеры адсорберов установок различных типов даны в гл. 8. [c.699]


Смотреть страницы где упоминается термин Разделение воздуха установки с регенераторами: [c.801]    [c.94]    [c.199]    [c.246]   
Основные процессы и аппараты химической технологии Издание 5 (1950) -- [ c.724 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение разделения воздуха

Установки воздуха

Установки разделения



© 2025 chem21.info Реклама на сайте