Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм циклогексана

    Насыщенные углеводороды, пригодные для сульфоокисления, можно разделить на две группы. В первую группу входят соединения, которые, после того как реакция сульфоокисления была инициирована ультрафиолетовыми лучами, добавками озона и перкислот и т. п., продолжают реагировать и в отсутствие этих факторов. К этим соединениям в первую очередь относятся циклогексан, метилциклогексан и далее гептан. Вторая группа веществ, к которым в особенности принадлежат высокомолекулярные парафиновые углеводороды, требует во время реакции сульфоокисления непрерывного воздействия одного из упомянутых выше факторов. Такое своеобразное поведение отдельных углеводородов заставляет выяснить механизм реакции. [c.483]


    Нафтены при термолизе более стабильны, чем соответствующие алканы. Наиболее устойчивыми среди нафтенов являются цик — лопентан и циклогексан. Реакции термолиза незамещенных цикло — алканов протекают по нецепному механизму посредством разрыва одной из С —С —связей и образования бирадикала, который далее распадается на стабильные молекулы  [c.33]

    Суть этого механизма сводилась к тому, что гидрогенолиз циклопентана на Pt/ является типичной дублетной реакцией при реберной двухточечной адсорбции углеводорода на поверхности платины. Согласно предложенному механизму, на поверхности катализатора происходит последовательная адсорбция двух соседних атомов углерода. При этом вероятность адсорбции каждого из них пропорциональна числу связанных с ним Н-атомов. Исходя из этого, вероятности адсорбции первичного, вторичного и третичного атомов углерода равны соответственно 3, 2 и 1. Таким путем с помощью предложенной схемы предпринята попытка объяснить разные относительные скорости гидрогенолиза различных связей кольца. Однако эта схема не объясняла, почему на Pt/ не подвергаются гидрогенолизу н-пентан или циклогексан, которые могут адсорбироваться на поверхности платины совершенно таким же способом и, казалось, могли бы реагировать по тому же дублетному механизму. [c.124]

    Скорость гидрогенолиза в различных растворителях уменьшается в следующем порядке этанол > бензол > циклогексан. Таким образом, влияние растворителя находится в согласии с ионным механизмом. [c.299]

    Тогда, последовательно вводя метку в циклогексан и цикло-гексен, можно вычислить раздельно величины 1, и>[, и>2 и м з, характеризующие скорость превращения по дублетному и или секстетному (ш2) механизмам, а также возможное участие в этих превращениях реакции диспропорционирования циклогексена (по и ). [c.132]

    На рениевом катализаторе при 336 °С 77% радиоактивного углерода, введенного в небольшом количестве циклогексена, переходило в циклогексан и только 17% — в бензол. Следовательно, 11 > Шз, и реакция диспропорционирования не может играть существенной роли. Расчеты показали, что т. е. реакция протекает в основном по секстетному механизму. [c.132]

    Гидрирование конденсированных полициклических ароматических углеводородов происходит в несколько ступеней по механизму, в известной степени аналогичному одноступенчатому гидрированию бензола в циклогексан без промежуточного образования циклогексена. Гидрирование колец протекает последовательно, например по схеме 1. [c.130]

    Сведения о механизме и кинетике процесса гидрирования бензола в литературе весьма разноречивы [7—9]. Это относится не только к порядку реакции по бензолу, водороду и циклогексану, но и к температурным коэффициентам, энергии активации н другим характеристикам. Некоторые авторы считают, что процесс протекает по нулевому порядку по бензолу ц первому по водороду. В то же время для температур выше 100°С порядок реакции, определенный разными авторами, оказывается различным [7] [c.17]


    В 1936—1937 гг. А. А. Баландин исследовал дегидрогенизацию циклогексановых углеводородов на окиси хрома [180], установив при этом реберную ориентацию цикла при хемосорбции на дублетном активном центре. Из мультиплетной теории следует, что на никеле при плоскостной ориентации колец, т. е. при секстетном механизме, циклогексан должен дегидрироваться быстрее, чем декалин, для молекулы которого требуется больше места на поверхности. При реберной же ориентации на окиси хрома циклогексан и декалин должны дегидрироваться с одинаковой скоростью. Это предсказание теории точно оправдывается на практике [5]. [c.107]

    Изучение конфигурационной изомеризации циклогексанов и циклопентанов показало, что эта реакция имеет ряд сходных черт непосредственное участие в реакции водорода, отсутствие циклоалкенов и аренов в условиях мягкого протекания конфигурационной изомеризации достаточно близкие значения энергий активации и т.д. Все это дает основание полагать, что конфигурационная изомеризация гомологов циклогексана также проходит 1П0 идентичному или близкому механизму Sfj2, описанному для стереоизомерных диалкилциклопен-танов [II]. [c.80]

    В соответствии с классическими взглядами, ароматизация алканов на оксидных и металлических катализаторах протекает по пазным механизмам. Согласно [141, 142], на оксидах катализаторах вначале происходит дегидрирование алкана в алкен, последующая циклоизомеризация алкена в циклогексан и, наконец, дегидрирование последнего в арен. На металлических, в частности платиновых, катализаторах постулировался другой механизм алканы— -циклогексаны—варены [143, 144]. Основанием для этого явилось исследование реакционной способности 2,2- и 3,3-диметилгексанов. Одним из продуктов превращения 3,3-диметилгексана в исследованных условиях явился гел1-диметилциклогек-сан. [c.237]

    В дальнейшем для более глубокого понимания механизма дегидроциклизации алканов в присутствии оксидных катализаторов был использован [21] кинетический изотопный метод, с помощью которого удалось исключить из приведенной выше схемы ряд стадий (2, 3, 6, 10). Так, в опытах со смесями н-гексан — циклогексан- С удельная радиоактивность циклогексана не уменьшалась, т. е. из гексана не образуется нерадиоактивный циклогексан. Это означает, что последний не является промежуточным продуктом в процессе ароматизации н-гексана. В то же время в опытах со смесями гексан — гексен- С в катализате обнаружено заметное уменьшение мольной радиоактивности гексена, что, очевидно, вызвано разбавлением меченого олефина нерадиоактивным гексеном, образующимся при дегидрировании гексана. Полученный бензол обладал большей мольной радиоактивностью, чем непрореагировавший гексен, что говорит об образовании бензола через гексен [147]. Существенным фактом является появление в катализате меченых гексадиенов (из гемсена- С). Опыты по арома- [c.238]

    Изучение изомеризации предельных угленодородов в течение болсс двух десятилетий все возрастающим числом исследователей дало много сведений, важных как для техники, так и для теории. Исследования в этом направлении стимулировались потребностью в изобутане — сырье для процессов алкилирования, а также желательностью иревращения содержащихся в бензине парафинов нормального строения в изомеры с разветвленными цепями, обладающие более высокими аитидетонацион-иыми свойствами. Практическое значение аналогичного процесса изомеризации алкилциклопентанов в циклогексан или его алкилзамещенные объясняется главным образом тем, что эти последние являются промежуточными соединениями при производстве соответствующих ароматических углеводородов посредством дегидрогенизации. Сам циклогексан также является сырьем для получения адипиновой кислоты для производства иейлопа. Помимо этой практической стороны дела, изучение подобных реакций может пролить свет на поведение углеводородов и помочь в разъяснении механизма каталитических реакций. [c.14]

    Свободные щелочные металлы благодаря своим высоким электро-нодонорным свойствам способны катализировать различные гетеролитические реакции в закритических условиях, исключающих грмо-генный механизм катализа [28]. Так, литий катализирует пр ррещ-нение этилена к циклогексану при температурах до 450 С и этилена к аммиаку при температурах до 175—200° С- [c.157]

    Из приведенных выше данных видно, что на платине прямое гидрирование бензола в циклогексан по крайней мере в 5 раз более вероятно, чем через промежуточное образование циклогексена при протекании процесса в кинетической области и в 58 раз — в диффузионной области. Следовательно, на платине преобладает сек-стетный механизм. Отметим также, что скорость гидрирования циклогексена по сравнению со скоростью гидрирования бензола в кинетической области выше на два порядка, в диффузионной — на один порядок. Этим объясняется невозможность образования больших количеств циклогексена при гидрировании бензола. [c.133]

    Особенности гидкрокрекинга циклогексанов Сю и выше с короткими алкильными цепями объясняются следующей схемой механизма реакции  [c.283]

    Например, при 130—140 °С (температура, при которой предпочтительнее вести разложение пероксида-инициатора) в растворе каталитических количеств грет-бутилпероксида в циклогексане под давлением этилена образуется вязкий высококипящий продукт, часть которого представляет собой твердое вещество этот продукт состоит из этилциклогексана и теломеров (бутил-, гек-СИЛ-, октил- и более высокомолекулярных алкилциклогексанов, алкильные группы которых имеют четное число углеродных атомов от 2 до 40). Реакция, очевидно, протекает по oBoooflHoipaAH-кальному цепному механизму  [c.132]


    ЭТОЙ температуры может образовываться циклогексан. Таким образом, эти две последовательно протекающие реакции могут быть осуществлены совместно лишь в относительно узком температурном интервале, а именно в пределах 550— 700°. При этих температурах наиболее стабильным углеводородом является бензол таким образом, исследователь опять сталкивается с задачей подбора катализатора, который ускорял бы образование олефина и его циклизацию, но в то же время не приводил бы к ароматизации. Такие же рассуждения верны и для алкилциклогексанов в настоящее время, по-видимому, не существует способа непосредственного превращения парафинов в циклогексаны. При рассмотрении истинного механизма образования ароматических углеводородов из парафинов было высказано предположение, что образующиеся циклогексаны непрерывно хемосорбируются на поверхности катализатора и ие могут быть выделены в свободном состоянии [1]. [c.232]

    Было отмечено, что над Сг Од прн 450° циклогексан дегидрируется полностью, но наблюдается также и дегидрирование циклопентана. Объясняется это тем, что молекула адсорбируется ребром между дуплетом активных центров, в результате отщепляются два атома Н. При таком механизме из JH 2 получается циклогексен, из парафинов—олефины и диолефины. Реберная ориентация требует более высоких температур, чем плоскостная. Объяснить это различие пытались возрастанием интенсивности колебания молекул с температурой, так как при дуплетном механизме число степеней свободы у молекул больше. Углеобразование при высокотемпературном разложении циклогексана, его гомологов и алифатических углеводородов объясняется также плоскостной ориентацией, но отличной от обычной поворотом молекулы на 30° (рис. 45). При такой адсорбции [c.258]

    Примером трансаннулярных реакций, протекающих по радикальному механизму, являются превращения средних циклов в присутствии платинированного угля при 300 °С (С. И. Хромов и Е. С. Баленкова). Циклогексан в этих условиях дегидрируется, давая бензол. Для циклов большего размера возможна трансаннулярная дегидроциклизация с участием интраанну-лярных атомов водорода. [c.489]

    Циклонентаны. Изомеризация метилциклоиентана в циклогексан протекает только в присутствии инициаторов, способных образовать карбоний-ионы [73, 74, 76—79]. Рассмотренные в разделе, посвященном изомеризации к-бутана, методы получения карбопий-ионов с успехом используются и при изомеризации метилциклоиентана. Механизм этой изомеризации аналогичен механизму изомеризации алканов  [c.93]

    В противоположность э ому реакция оптически активного а-фснилэтилхлорида с нитритом серебра протекает в этиловом эфире или в бензоле с сохранением конфигурации, в то время как в циклогексане происходит обращение конфигурации [17]. Эти факты следует толковать таким образом, что в циклогексане реакция проходит по ступенчатому механизму, а в диэтиловом эфире (и в бензоле) — через стадию образования а-фенилэтнлкарбоний-иона. Более подробное обсуждение стереохимии и механизма реакции солей серебра с органическими галогенидами Судет опубликовано позднее 17]. [c.123]

    Считают также, что рнция может протекать по гомолитич. механизму через промежут. образование пары аллильных радикалов или циклогексан-1,4-диильного бт)адикала. [c.487]

    Эффективный катализатор дегидрирования циклогексена и циклогексана в бензол, а также этилбензола в стирол получается при нанесении 10% КОН на AI2O3 [349]. Реакции протекают при температурах 550—600 с. Предполагается, что механизм процесса включает депротонирование аллильного атома углерода с образованием карбаниона и последующее отщепление гидрид-иона. На таком катализаторе при 600 °С и объемной скорости 1 ч щ1клогексен превращается в бензол на 92%, циклогексан — на 11%, выход стирола при дегидрировании зтилбензола составляет 29%. Побочные реакции крекинга исходных углеводородов протекали в незначительной степени. По-видимому, реакция крекинга углеводородов не характерна для основных катализаторов, на которых процесс осуществляется через промежуточный карбанион. Это является существеннь отличием основных катализаторов от кислотных, на ко-124 [c.124]

    Циклоалканы. Из циклоалканов в состав сырья для промышленного пиролиза входят только циклопентан, циклогексан и их алкилзамещенные. Основные продукты разложения циклопентана— этилен и пропилен, а при значительной степени разложения циклопентана образуется циклопентадиен. Реакция. протекает преимущественно по радикально-цепному механизму [33]. Вначале, когда концентрация радикалов невелика, циклопентан образует бирадикал, который быстро реагирует по од-.ному из двух направлений  [c.20]

    Реакционная среда может оказывать большое влияние на механизм и относительные выходы продуктов реакций цикло-присоединения и раскрытия кольца. В разд. 5.3.2 [102] и 5.3.3 [124] вкратце уже упоминались два примера такого влияния. При взаимодействии диметилкетена с енаминами, например с Н-изобутенилпирролидином, двухстадийная реакция с участием цвиттерионного интермедиата, приводящая преимущественно к -метилен-б-лактону (аддукту 2 1), конкурирует с согласованным присоединением, в результате которого образуется производное циклобутанона по реакции (5.141) [102]. В циклогексане 92% енамина реагирует по согласованному механизму и превращается в произ1водное циклобутанона, а 8% енамина взаимодействует с диметилкетеном с участием цвиттерионного промежуточного соединения. Рост полярности растворителя сопро- [c.355]

    Не только шестичленные, но и пятичленние циклы способны дегидрироваться по дублетному реберному механизму. Автором и В. С. Федоровым [97] было показано, что на окиси хрома циклопентан дегидрируется в тех же условиях, что и циклогексан. [c.33]

    Интересное доказательство наличия реберной и плоскостной ориентации в разных случаях было получено автором и Г, В. Исагулянцем [224]. Как мы видели, циклогексан дегидрируется на Ni по секстетному механизму, а на СггОз — по дублетному. То же относится и к декалину. Оказалось, что на Ni циклогексан дегидрируется быстрее, чем декалин, который занимает при плоском расположении на поверхности больше места (рис. 18) это доказывает плоскостную ориентацию колец на N1. На окиси хрома циклогексан и декалин дегидрируются с одинаковыми скоростями — здесь механизм уже не плоскостной, а реберный. У циклогексана и у декалина е одинаковы на Ni (s = 12,5 ккал1моль) и одинаковы на СгзОз (е = 26 ккал/моль). [c.55]


Смотреть страницы где упоминается термин Механизм циклогексана: [c.483]    [c.503]    [c.550]    [c.134]    [c.243]    [c.80]    [c.90]    [c.91]    [c.94]    [c.118]    [c.35]    [c.182]    [c.284]    [c.40]    [c.411]    [c.39]    [c.32]    [c.58]    [c.162]    [c.184]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.536 , c.537 ]




ПОИСК





Смотрите так же термины и статьи:

Циклогексан



© 2025 chem21.info Реклама на сайте