Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорберы в производстве соляной кислоты

Рис. 15. Схема автоматизации процесса и контроля производства соляной кислоты и хлористого водорода 1,2- регуляторы давления водорода и хлора на коллекторе 3, 4 - общецеховые расходомеры водорода и хлора 5, 7 - расходомеры водорода и хлора, направляемых в печь 6 - регулятор соотношения расходов водорода и хлора, направляемых в печь 8- измерители температуры 9 - регулятор температуры (концентрации) кислоты 10 - фазоразделители 11 -абсорберы 12 - водяные ротаметры 13 - хвостовая (санитарная) колонна 14 - колонна абсорбции . 15 -игуритовые холодильники 16 - ротаметры водорода и хлора 17 - печи синтеза В - вода К - канализация КК - кислая канализашя КТ - кислота товарная ВА - вода на абсорбцию ВО - вода на охлаждение Рис. 15. <a href="/info/1917531">Схема автоматизации процесса</a> и <a href="/info/838907">контроля производства соляной кислоты</a> и <a href="/info/17346">хлористого водорода</a> 1,2- <a href="/info/14109">регуляторы давления</a> водорода и хлора на коллекторе 3, 4 - общецеховые расходомеры водорода и хлора 5, 7 - расходомеры водорода и хлора, направляемых в печь 6 - <a href="/info/604463">регулятор соотношения</a> <a href="/info/66179">расходов водорода</a> и хлора, направляемых в печь 8- <a href="/info/1012812">измерители температуры</a> 9 - <a href="/info/471729">регулятор температуры</a> (концентрации) кислоты 10 - <a href="/info/394379">фазоразделители</a> 11 -абсорберы 12 - водяные ротаметры 13 - хвостовая (санитарная) колонна 14 - <a href="/info/30194">колонна абсорбции</a> . 15 -игуритовые холодильники 16 - ротаметры водорода и хлора 17 - <a href="/info/793066">печи синтеза</a> В - вода К - канализация КК - кислая канализашя КТ - <a href="/info/804643">кислота товарная</a> ВА - вода на абсорбцию ВО - вода на охлаждение

    Характеристика работ. Ведение технологического процесса абсорбции — поглощения газов жидкостями (соляной кислотой, крепкой серной кислотой, концентрированной аммиачной водой, рассолом и др.) в абсорберах разной конструкции распыливающих, тарельчатых и других большой производительности или находящихся под высоким давлением. Проверка герметичности абсорбционной системы, правильности показаний контрольно-измерительных приборов путем контрольных анализов. Прием газа, предварительная очистка его промывкой, осушка. Прием кислоты и других орошающих жидкостей. Наблюдение за работой абсорбционной системы. Контроль и регулирование плотности орошения в очистительных колоннах и абсорберах, сопротивления в системе, температуры и концентрации газа и кислот и других параметров технологического процесса по показаниям контрольно-измерительных приборов и результатам анализов. Улавливание, очистка отходящих газов, откачка конденсата по назначению. Доведение получаемого продукта до нужной концентрации и передача готовой продукции в производство, хранилища, железнодорожные цистерны или на расфасовку. Расчет сырья для производства готовой продукции, температурного режима в зависимости от количества работающих печей, определение удельного веса кислот по ареометру и расчет согласно таблицам концентрации кислот в сборниках и других параметров, предусмотренных технологией. При необходимости остановка абсорбционных колонн и включение их в работу после остановки с доведением ее работы до нормального технологического режима. Регулирование процессов с пульта дистанционного управления, оборудованного контрольно-измерительными и регистрирующими приборами, или вручную. Периодическая промывка очистительной системы. Контроль и координирование работы промывного, сушильного, абсорбционного и других смежных отделений. Обслуживание абсорбционных и очистительных систем, оросительных холодильников, оборудования по улавливанию и очистке отходящих газов, коммуникаций, насосов сборников и другого оборудования. Устранение неисправностей в газовых линиях и кислотных коммуникациях, ремонт и замена их. Отключение системы при остановке на ремонт. Руководство аппаратчиками низшей квалификации при их наличии. [c.7]

    Аппаратурное оформление абсорбции хлористого водорода определяется масштабами производства. В производствах, работающих по периодическому методу, когда газы получаются в нескольких периодически действующих аппаратах и состав их непостоянен, используют установку, изображенную на рис. 26. Хвостовые газы подают гуммированным вентилятором в нижнюю часть футерованного насадочного абсорбера. Насадка абсорбера орошается водой, циркулирующей в замкнутом контуре абсорбер — сборник — насос — холодильник. Циркуляцию поглотительного раствора ведут до получения соляной кислоты стандартной концентрации (31%), после чего полученную соляную кислоту передают для использования в производстве, а сборник заполняют чистой водой. Второй абсорбер служит для промывки водой отходящих газов перед выбросом их в атмосферу. Промывные воды из второго абсорбера выбрасывают в канализацию. [c.86]


    В производстве эпихлоргидрина (ЭХГ) одним из промежуточных веществ является хлористый аллил (ХА) получаемый на узле хлорирования пропилена. Основным сырьем для получения ХА являются пропилен и хлористый водород. Непрореагировавшие пропилен и хлористый водород поступают в отделение очистки. Процесс очистки заключается в полном поглощении хлористого водорода водой с получением соляной кислоты. Для окончательной очистки от следов хлористого водорода пропилен промывают щелочью и водой в абсорбере, загруженном кольцами Рашига. Очищенный пропилен поступает в компрессорное отделение. [c.103]

    В производстве соляной кислоты на установке абсорбции хлористого водорода произошел взрыв в газовом холодильнике, установленном за абсорбером. При поступлении в абсорбер газ не был взрывоопасным, но при поглощении водой хлористого водорода концентрация оставшегося водорода превысила ниж-ний концентрационный предел воспламенения, а так как в газовом холодильнике находился воздух, образовалась взрывоопасная смесь, которая, и взорвалась. [c.440]

    Керамические изделия применяли еще алхимики, пользовавшиеся глиняными ретортами для перегонки, глиняными приемниками и холодильниками. Во времена алхимиков это был единственный материал, пригодный для проведения реакций в кислой среде. Применявшиеся тогда глиняные аппараты должны были обладать поразительной прочностью. Например, в 1526 г. в Норд-гаузене (Гарц) купоросное масло получали в ретортах нагреванием сульфата железа до белого каления. Керамическая аппаратура, арматура, нутч-фильтры, трубы, насосы из керамики до сих пор еще широко применяются, но лишь в тех случаях, когда процессы проводятся при температуре до 80° и при отсутствии резких изменений температуры. Из керамики изготовляют также резервуары вместимостью несколько тысяч литров, приемники, поглотители в производстве соляной кислоты, абсорберы, скрубберы, мешалки, шаровые мельницы. Недостатком керамики является большая чувствительность ее к механическим воздействиям. То же можно сказать и о фарфоровых аппаратах, хотя их применяют и при довольно высоких температурах в условиях равномерного нагревания и охлаждения. Фарфоровые мешалки, перегонные кубы, колонны, холодильники практически устойчивы к действию почти всех реагентов. [c.249]

    Для этого охлаждают газ и жидкий поглотитель перед абсорбцией в различного рода теплообменниках и отводят тепло абсорбции при помощи внутренних холодильников, размещенных в абсорбере, или охлаждая снаружи абсорбционный аппарат. Иногда отвод тепла абсорбции производят без охлаждения, используя это тепло для испарения воды и концентрирования продукта в самом абсорбере. Этот принцип адиабатической абсорбции применен в производстве соляной кислоты. [c.166]

    Гаспарян В. М., Производство соляной кислоты без охлаждения абсорбера. Труды Ереванского Политехнического института им. К. Маркса, Ереван, 1, 59 (1941). [c.280]

    A. М. Г а с п а р я н, Производство соляной кислоты без охлаждения абсорбера, Труды Ереванского политехнического ин-та, I (1941). [c.313]

    Квадратные или прямоугольные аппараты небольшого сечения могут быть изготовлены из цельных андезитовых камней, без вертикальных швов, кроме угловых. Такие аппараты—башня 1 квадратного сечения и абсорбер 2 прямоугольного сечения, применяемые в производстве соляной кислоты, изображены на оис. 82. [c.226]

    Изделия из непрозрачного кварцевого стекла (трубы, детали для холодильников и абсорберов, применяемые в производстве соляной кислоты) отличаются высокой химической стойкостью, огнеупорностью и термостойкостью. [c.317]

    Пластинчатые теплообменники применяются также в качестве абсорберов в производстве соляной кислоты. [c.69]

    Газообразный хлор, получаемый в электролитических ваннах, содержит до 30% влаги (воды). Для осушки хлора применяют купоросное масло (92,5% НгЗО ) и олеум, которые после смешения подают в колонну, загруженную кольцами Рашига, навстречу поднимающемуся потоку хлора. Технологическая схема производства соляной кислоты (рис. 118) состоит из аппарата 1 погружного горения, брызгоотделителя 2, холодильника-абсорбера 3, сепаратора 4, сборника 5 соляной кислоты и хвостового скруббера 6. Все технологическое оборудование изготовлено из углеграфитовых материалов и керамики. При совместном сжигании хлора и водорода в погружных горелках необходимо обращать большое внимание на степень их перемешивания до поступления в камеру сгорания. [c.242]

    Аппарат, где проводят абсорбцию, носит название абсорбера, В производстве соляной кислоты можно проводить изотермическую и адиабатическую абсорб-1ШИ, которые отличаются способом отвода тепла. [c.27]

    Приведенным на рис. 3 распределением температур в абсорбере пользуются в производстве соляной кислоты для автоматического регулирования ее концентрации. Большим преимуществом адиабатической абсорбции является возможность регулирования процесса при изменении объемов подаваемого ИС6 --газа и его состава. Для этого достаточно изменить объем подаваемой воды, зная температуру в одном из сечений колонны (см. ниже). Такое регулирование часто производят автоматически. Для отвода тепла абсорбции требуется примерно 80-90% подаваемой водь и только 10-20% идет на образование соляной кислоты. Объемы воды в расчете на 1 кг НСв гаэа, необходимые для образования соляной кислоты в зависимости от ее концентрации, приведены на рис. 5. [c.31]


    Отвод выделяемого тепла. Отвод тепла, выделяющегося при абсорбции, может производиться (см. с. 213) охлаждением жидкости в выносных холодильниках, путем внутреннего охлаждения абсорбера или за счет испарения части поглотителя. Охлаждение в выносных холодильниках широко применяется на практике. Однако этот способ отвода тепла нельзя считать наилучшим он обычно требует перекачки жидкости (особенно при циркуляционном охлаждении), а коэффициент теплопередачи в выносных холодильниках большей частью бывает низким. Данный способ отвода тепла применим при аппаратах любого типа. Более целесообразным надо считать использование внутреннего охлаждения и, в тех случаях когда это возможно, охлаждение за счет испарения части поглотителя. Последний способ получил широкое распространение, в частности, при абсорбции НС1 в производстве соляной кислоты. [c.580]

    Пример. Рассчитать диаметр абсорбера и определить расход воды для улавливания хлористого водорода из отходящих газов производства синтетического цитраля, если начальная концентрация его составляет /и=50 мае. %, конечная концентрация 1/к = 0,1 мае. %, плотность газа 1,45 кг/м расход его 36 м ч, линейная скорость газа в абсорбере 1,5 м/с, а концентрация получаемой соляной кислоты 20 %. [c.290]

    Из реакторов гидролиза (этерификации) 8 хлористый водород поступает в скруббер 7, в верхнюю часть которого насосом 10 подается 25%-ный раствор соляной кислоты. После насыщения хлористым водородом в абсорбере 7 поток 36%-ной соляной кислоты поступает в десорбер 6, где от насыщенной соляной кислоты отделяется избыточный хлористый водород, направляемый в реактор 1 синтеза водородсодержащих хлорсиланов (дихлорсилана, трихлорсилана и др.). Избыточная соляная кислота выводится из системы. При такой схеме хлористый водород полностью утилизируется на базе очищенного возвратного хлористого водорода обеспечивается производство водородсодержащих хлорсиланов. [c.115]

    На одном из японских заводов, как уже было указано осуществлено централизованное автоматическое управление отдельными участками хлорного производства при помощи аналоговой вычислительной машины ио сигналу АМ. Подача разбавленной соляной кислоты на абсорбционную установку, состоящую, по-видимому, из трех абсорберов, стабилизирована здесь регулятором расхода, задание которого изменяется по сигналу от вычислительной машины. Расход разбавленной соляной кислоты на абсорбцию зависит от числа работающих электролизеров Л и их амперной нагрузки А. [c.249]

    Этот же прием ускорения разложения апатита фосфорной кислотой в присутствии азотной или соляной кислоты можно использовать и для производства двойного суперфосфата бескамерным способом. В этом случае при перемешивании пульпы из апатита, фосфорной и азотной (соляной) кислот идет разложение апатита с образованием раствора фосфорной кислоты и нитрата (хлорида) кальция. При высушивании пульпы с ретуром азотная (соляная) кислота регенерируется. Ее пары улавливаются в абсорбере пульпой из апатита и фосфорной кислоты, причем одновременно идет разложение апатита. [c.193]

    Хлористый водород очень интенсивно поглощается водой. Несмотря на то что в кварцевых абсорберах поверхность контакта газовой и жидкой фаз весьма невелика, достигается достаточно полное поглощение НС1. Поэтому число абсорберов, из которых монтируется абсорбционная установка, определяют, исходя из условий, необходимых для полного отвода тепла гидратации НС1. Для производства 7 т соляной кислоты в сутки достаточна установка из 13 кварцевых холодильников и И абсорберов. [c.310]

    И Др.). отсасывают из сульфатных печей с помощью вакуум-насоса, установленного в конце абсорбционной. истемы. Газ вначале поступает в горячую башню 1 для охлаждения и очистки от сульфатной пыли и части увлеченной серной кнслоты. Из горячей башни вытекает в небольшом количестве грязная соляная кислота ( башенная кислота), являющаяся отходом производства. Газ из горячей башни поступает для поглощения хлористого водорода в абсорбционную систему, работающую по способу Гаспаряна. Перед входом в систему газ проходит очиститель 2, в котором он барботирует через слой соляной кислоты для полной очистки от примеси серной кислоты. Затем газ проходит снизу вверх через абсорбционную систему <3, состоящую из шести ступенчато расположенных абсорберов барботажного типа. Вода подается в верхний шестой абсорбер и проходит через все абсорберы, идя навстречу газу, который барботирует через нее. При этом хлористый водород из газа поглощается водой и образуется крепкая соляная кислота, которая выходит из первого абсорбера [c.85]

    Различные детали корпусов и внутренных устройств химических аппаратов для работы со средами средней и повышенной агрессивности абсорберов и реакторов, применяемых в производствах бромистоводородной, плавиковой, фосфорной и хлоруксусной кислот, хлора, хлорбензола, тетрахлорэтана и трихлорэтилена баков и резервуаров, применяемых в производстве соляной кислоты, для хранения фторуксусных, фтор-бористых и фторфосфорных смесей в производстве плавиковой кислоты и других сред от-мывные колонны, применяемые в производствах соляной и бромистоводородной кислот теплообменники для нагрева и охлаждения агрессивных сред в производствах серной кислоты, сернистого ангидрида, хлора, хлоратов и других высокоагрессивных химических продуктов [c.206]

    Хотя процесс абсорбции концентрированных наров НС1, применяемый в производстве соляной кислоты, выходит из рамок настоящей книги, извлечение следов НС1 из хвостовых газов такого процесса, несомненно, относится к области очистки газа. Очистка газа от следов НС1 особенно важна в производстве соляной кислоты как побочного продукта процессов хлорирования углеводородов, так как выделяющийся в ходе этих процессов НС1 сопровождается большим объемом инертных компонентов. Описываемый в обзоре методов производства соляной кислоты [32] абсорбер для очистки хвостовых газов имеет обычную конструкцию и заполняется керамической насадкой. Абсорбер работает при расходе жидкости около 2,4 м ч-м и выше и скорости газа 0,3—0,9 м/сек. В нем получается слабая кислота, содержащая 20% или меньше НС1 концентрация НС1 в отходящем газе снижается до 0,1—0,3%. Абсорберы обычно работают под вакуумом газ просасывается вытяжным вентилятором на линии отходящего газа. [c.136]

    В литературе описаны взрывы водородо-воздушных смесей в абсорберах и теплообменной аппаратуре в производстве соляной кислоты. Водородо-воз-душные смеси образуются при абсорбции хлористого водорода водой из не-взрывоопасной исходной смеси газов хлористого водорода и водорода, получаемой при синтезе. При прохождении такой смеси через насадочный скруб бар, орошаемый водой, хлористый водород растворяется в абсорбенте (воде) с образованием соляной кислоты, а газовая фаза обогащается практически керастворенным н аодс водородом, который с воздухом дает взрывоопасные смеси в верхней, свободной от насадки, части абсорбера и последующих поверхностных газовых холодильниках. [c.214]

    Прежде всего непроницаемый графит был применен в производстве соляной кислоты, где до него не было хорошего химически стойкого теплопроводного материала. Из графита изготовляются испарители, абсорберы, конденсаторы, центробежные насосы и др. Благодаря высокой теплопередаче (свыше 1000 ккал1м час °С) в абсорберах достигаются большие скорости абсорбции. [c.22]

    Прежде всего, пропитанный непроницаемый гр1афит нашел применение в производстве соляной кислоты, где металлы (за исключением тантала) из-за коррозионного разрушения не применимы и где применялась почти исключительно керамика. На смену громоздкой керамиковой аппаратуры (турилл, целлариусов и др.) пришли абсорберы, испарители, конденсаторы, нагреватели и холодильники из графита. Техническая и экономическая целесообразность применения графитовой аппаратуры в этом производстве настолько очевидна, что за короткий период после второй мировой войны почти вся теплообменная аппаратура переоборудована на графитовую. [c.21]

    Пленочные абсорберы целесообразно применять для поглощения хлористого водорода из высококонцентрированных газов с получением концентрированной сопяной кислоты. Однако в таких абсорберах при производстве концентриросанной соляной кислоты происходит недостаточно полное поглощение хлористого водорода, поэтому дополнительно устанавливают хвостовую насадочную колонну [973 [c.49]

    Высокая теплопроводность графитовых материалов делает их непревзойденными для изготовления теплообменной аппаратуры, работающей в высокоагрессивных средах. В производстве хлористого водорода применяют холодильни-1СИ из игурита, которые служат по семь лет и более. На ряде химических заводов работают абсорбционные колонны, изготовленные из бакелитированного графита и заполненные фторопластовыми кольцами. В Германии на этой стадии производства применяют аппараты из пропитанного графита — игурита, выполненные в виде многокамерных абсорберов для получения соляной кислоты, работающие по принципу прямотока и противотока. [c.256]

    На одном из заводов по производству синтетической соляной кислоты на установке абсорбции хлористого водорода произошел взрыв в газовом холодильнике, находящемся за абсорбером. Взрывом были разрушены газовый холодильник, коммунлкации и частично абсорбер. [c.127]

    В ГДР на этой стадии производства применяют аппараты из игурита (коробона). Электрохимический комбинат Биттерфельд изготавливает прямоугольные многокамерные игуритовые абсорберы для получения соляной кислоты, работающие по принципу прямотока и противотока [9]. [c.259]

    При промышленном производстве бис (октилфенокси) дитиофосфата (рис. 94) сначала октилфенол с целью активирования осерняют — обрабатывают хлоридом одновалентной серы. Для этого в реактор 1 загружают октилфенол (1 масс, ч.), веретенное масло АУ (2 масс, ч.) и затем при 25—30 °С и перемешивании постепенно добавляют хлорид серы. Выделяющийся хлористый водород поглощают водой в абсорбере 4 и собирают в емкости 5 в виде 8%-ной соляной кислоты. По окончании осернения перекачивают смесь в реактор 7, куда при перемешивании вводят пентасульфид фосфора. Выделяющийся при фосфи-ровании сероводород нейтрализуют щелочью в абсорбере 8 и собирают в сборнике 9 в виде раствора гидросульфида натрия. [c.362]

    Из пропитанного графита, АТМ-1 и графитопласта изготовляют самую разнообразную аппаратуру (в том числе испарители, абсорберы, конденсаторы, центробежные насосы, колонны, башни) и различную арматуру (краны, вентили и др.). Теплообменная аппаратура из графитовых материалов широко применяется в производствах серной и соляной кислот. Реакторы, футерованные графитовой плиткой, нашли применение в анилинокрасочной промышленности вместо реакторов, плакированных свинцом.В производстве фосфорной кислоты графитовыми плитками футеруют реакторы из стали. Трубчатые де егматоры и колонки, футерованные графитовой плиткой, применяются в производстве гексахлорана. Футеровка производится на замазках арзамит с подслоем на основе резорцинофено-лоформальдегидной смолы. Консистенция замазки арзамит должна быть такой, чтобы плитка не сползала с вертикальной поверхности под действием собственного веса. [c.167]

    Для характеристики отдельных областей применения химически стойких графитированных изделий можно привести наиболее характерные примеры. В производстве фтористого аммония применяются электрографитовые нагреватели (взамен серебряных) в производстве бисульфата калия — нагреватели сероуглерода — конденсаторы четыреххлористого углерода—конденсаторы соляной кислоты —холодильники, конденсаторы, абсорберы и котг [c.78]

    Этот же прием ускорения разложения апатита фосфорной кислотой в присутствии азотной или соляной кислоты можно использовать и для производства двойного суперфосфата беска-мерным способом. В этом случае при перемешивании пульпы из апатита, фосфорной и азотной (соляной) кислот идет разложение апатита с образованием раствора фосфорной кислоты и нитрата (хлорида) кальция. При высушивании пульпы с ретуром азотная (соляная) кислота регенерируется. Ее пары улавливаются в абсорбере пульпой из апатита и фосфорной кислоты, причем одновременно идет разложение апатита. На рис. 86 представлена схема такого процесса. Потери азотной (соляной) кислоты можно компенсировать, добавляя ее в смеситель 3. Вместо этого можно вводить туда нитрат (хлорид) натрия эта соль будет реагировать с образовавшейся при [c.197]

    Хлористый водород — отход ряда производств хлорорганических продуктов — поглощается в насадочных колоннах Гаспаряна адиабатического типаАбсорбцию ведут при температуре кипения соляной кислоты. При этом отгоняются летучие органические соединения (например, бензол), образующие с водой азеотропные смеси, а также двуокись серы и хлор. При отдувке соляной кислоты воздухом получают продукт, по качеству близкий к синтетической соляной кислоте. Пары воды и летучих органических примесей, а также хлор, двуокись серы улавливаются в абсорберах, установленных после отдувочного аппарата. Уловленные органические примеси возвращаются в производственный цикл, соляная кислота может быть отправлена потребителям в гуммированных цистернах. [c.220]


Смотреть страницы где упоминается термин Абсорберы в производстве соляной кислоты: [c.184]    [c.70]    [c.141]    [c.510]    [c.394]    [c.238]    [c.155]   
Коррозия и защита химической аппаратуры Том 6 (1972) -- [ c.108 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбер

Абсорберы в производстве

Кислота соляная

Соляная кислота кислоты



© 2024 chem21.info Реклама на сайте