Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соляная кислота температуру кипения

Рис. 11. Зависимость скорости коррозии ниобия (I) и тантала (2) и их стационарных потенциалов, соответственно, [1 ] и (2 ) от концентрации кислот — а) серной б) фосфорной в) соляной при температурах кипения растворов Рис. 11. <a href="/info/317351">Зависимость скорости коррозии</a> ниобия (I) и тантала (2) и их стационарных потенциалов, соответственно, [1 ] и (2 ) от <a href="/info/17650">концентрации кислот</a> — а) серной б) фосфорной в) соляной при <a href="/info/6377">температурах кипения</a> растворов

    Адиабатическая абсорбция хлористого водорода. Принцип адиабатической абсорбции очень близок по своей сущности к ректификации в системе НС1—HgO. Одна из особенностей этого процесса — специфический характер зависимости температуры кипения соляной кислоты от ее концентрации. Как известно, соляная кислота образует азеотропную с.месь при концентрации 20, 24% НС1, имеющую максимальную температуру кипения 110°С (при нормальном давлении). Растворы кислоты меньшей концентрации имеют более низкую температуру кипения. При наличии более концентрированных растворов кислоты температура кипения их снова плавно понижается. Зависимость температуры кипения от концентрации соляной кислоты приведена на рис. 38. [c.461]

    Эти соединения легко разлагаются со взрывом. Моновинилацетилен получается пропусканием ацетилена через концентрированный раствор хлористого аммония и хлористой меди (одновалентной), слегка подкисленный соляной кислотой, при 60—70° и 2—3 ат. Продукты реакции пропускают через холодильник, где ббльшая часть воды отделяется от целевого продукта, имеющего температуру кипения 5°. Затем сырой винилацетилен конденсируется путем глубокого охлаждения и затем очищается ректификацией. [c.254]

    В соляной кислоте любой концентрации вплоть до температуры кипения (см. рис. 22.1). [c.383]

    Особым коррозионным свойством циркония является его стойкость в щелочах всех концентраций при температурах вплоть до температуры кипения. Он стоек также в расплаве гидроксида натрия. В этом отношении он отличается от тантала и, в меньшей степени, от титана, которые разрушаются под воздействием горячих щелочей. Цирконий стоек в соляной и азотной кислотах любой концентрации и в растворах серной кислоты с содержанием H2SO4 < 70 % вплоть до температур кипения этих сред. В НС1 и подобных средах оптимальной стойкостью обладает металл с низким содержанием углерода (<0,06 %). В кипящей 20 % НС1 после определенного времени выдержки наблюдается резкое возрастание скорости коррозии конечная скорость составляет обычно менее 0,11 мм/год [461. Цирконий не стоек в окислительных растворах хлоридов металлов (например, в растворах РеС1з наблюдается питтинг), а также в HF и кремнефтористоводородной кислоте. [c.379]

    Из солей при действии менее летучей кислоты. Так, менее летучая серная кислота (температура кипения 338° С) при нагревании вытесняет летучие кислоты — азотную и соляную из их солей  [c.66]


    Для выяснения структуры ксилолов смесь их с температурой кипения 136—145° окислялась по Ульману [8], 3%-ным раствором перманганата калия (в излишке от теории) в слабощелочной среде. Непрореагировавший перманганат калия раскислялся метиловым спиртом. Калиевые соли органических кислот отфильтровывались от осадка, который многократно промывался горячей водой. Фильтрат упаривался ка водяной бане, повторно фильтровался и добавлялся 10%-иый раствор соляной кислоты до слабокислой реакции и перегонялся. [c.26]

    Кислотная экстракция позволяет извлечь соединения основного характера и потому часто используется для выделения из нефти и других сложных смесей азотистых оснований. Последние практически нацело извлекаются из низкокипящих нефтяных фракций уже разбавленными растворами минеральных (серной, соляной) кислот для экстракции оснований из средних и тяжелых дистиллятов лучше применять растворы кислот повышенной концентрации. Тем не менее и этим способом представительные концентраты оснований получаются лишь из фракций, выкипающих до 350—400 С. С ростом температуры кипения степень извлечения оснований снижается из-за повышения гидро-фобности как исходных веществ, так и образующихся солей в связи с увеличением размеров углеводородной части молекул. Так, из тяжелых вакуумных газойлей водными растворами минеральных кислот удается извлечь лишь около 40% [27], а из нефтяных остатков водно-спиртовыми растворами серной кислоты — лишь около 8,5% [28] оснований. [c.8]

    Температура кипения и плотность еоляной кислоты зависят от ее концентрации, то есть от состава системы НС1—Н2О . Максимально возможное содержание НС1 в соляной кислоте равно 46,15% мае. При концентрации 20,22% мае. образуется азеотроп с температурой кипения 108,6 С. Наиболее распространенные сорта товарной соляной кислоты имеют концентрацию от 27 до 38% мае., что связано с особенностями ее производства. Температура замерзания такой кислоты составляет около -30° С. [c.350]

    Гидролиз сульфокислот производится или нагреванием их, или их солей, с разведенными кислотами в закрытых аппаратах—автоклавах, в лаборатории — в запаянных трубках, или пропусканием перегретого водяного пара через смесь сульфокислоты с серной кислотой, или наконец кипячением в открытых аппаратах с обратным холодильником с такой концентрации серной кислотой, температура кипения главной массы которой отвечала бы желаемой температуре гидролиза. Из кислот, входящих как составная часть реакционной смеси при гидролизе, имеют значение прежде всего серная кислота, соляная—в лабораторной преимущественно работе— и фосфорная кислоты. [c.191]

    При продолжении процесса абсорбции HG1 и повышении концентрации соляной кислоты температура абсорбции будет определяться точкой кипения кислоты соответствующей концентрации. Сначала, [c.496]

    Впервые наличие минимума давления пара в бинарных смесях было открыто Дальтоном [1], который отметил, что в конце перегонки водных растворов соляной и азотной кислот температура кипения и состав дистиллята остаются неизменными. При этом температура кипения смеси выше температуры кипения чистого высококипяш,его компонента, что обусловливает наличие минимума на кривой зависимости давления пара от состава. [c.9]

    Для анализа отбирались две пробы по 125 мл. В них определялось содержание азометинов и каждого из аминов. Для этого пробы медленно приливались к нагретому до 60° раствору динитрофенилгидразина, подкисленному концентрированной соляной кислотой (20 мл раствора гидразина ч-15 мл конц. соляной кислоты. Температура жидкости вновь доводилась до 50—60°, после чего проба оставлялась на ночь при комнатной температуре. Осадок гидразона отделялся фильтрованием, промывался, сушился и вывешивался, как обычно. Фильтрат освобождался от избыточного динитрофенилгидразина осаждением последнего бензальдегидом (см. ранее) и после отделения осадка динитрофенилгидразона бензальдегида упаривался на песчаной бане (при легком кипении) до полного удаления сернистой кислоты, что определялось пробой на слегка проявленную очень разбавленным раствором азотистой кислоты иодокрахмальную бумажку. Освобожденная От сернистого газа проба [c.1584]

    Нитриды неметаллов — бора и кремния — отличаются исключительно высокой коррозионной стойкостью. На карбид бора не действуют при температуре кипения разбавленные и концентрированные минеральные кислоты, растворы окислителей, щелочей и др. (табл. 32). На нитрид кремния не действует серная, соляная, азотная и фосфорная кислоты, не действуют хлор и сероводород при 1000° С. Изделия из нитрида бора стойки против окисления на воздухе при 700° С до 60 ч, при 1000° С до 10 ч, в хлор( при 700° С до 40 ч. Концентрированная серная кислота при комнатной температуре не действует на изделия из нитрида бора в продолжение семи суток концентрированные фосфорная, плавиковая и азотная кислоты действуют очень слабо. [c.297]


    Висмут — металл серовато-белого цвета, с красноватым оттенком. На воздухе не окисляется. Хорошо растворим в азотной кислоте с образованием средней соли висмута нитрата В (ЫОз)з. Не растворим в разбавленных серной и соляной кислотах. Температура плавления 271°, температура кипения 1470°, плотность 9,8. [c.208]

    Метод раздельного определения содержания ТЭС и ТМС. Метод основан на значительной разнице температур кипения ТМС (110°С) и ТЭС (ЮО С). Определение проводится в два этапа. На первом этапе бензин разгонкой в перегонном приборе разделяется на две фракции н.к. — 33°С, содержащую ТМС, и фракцию 133°С — к.к., в которой находится высококипящий ТЭС. На втором этапе в каждой фракции определяется содержание свинца по методу ГОСТ 28828—90 или ранее допущенным ионометрическим методом, основанном на определении ЭДС, возникающей между фторидным и хлорсеребряным электродами при погружении их в градуировочный раствор фтористого натрия до и после введения в него продуктов разложения алкильных соединений свинца соляной кислотой по методике ГОСТ 13210—72. [c.391]

    Андезиты обладают высокой кислотоупорностью и термостойкостью, что позволяет применять их в аппаратах, содержащих такие кислоты, как серная или соляная при температуре кипения. [c.226]

    Дальнейшая обработка этой тройной смеси заключалась в том, что нитросоединения восстанавливали в амины железом и соляной кислотой, после чего от кипящей при 90° смеси изомерных амилами- нов был отогнан 1-аминО бутан (температура кипения 76°). [c.569]

    Имеются сведения о возникновении в тантале при действии иа него водорода хрупких разрушений вследствие наводорожи-вания металла, в особенности при нагреве. По этой причине не рекомендуется контактировать тантал с другими металлами, процесс коррозии которых протекает с водородной деполяризацией. На рис. 198 показано влияние температуры на растворимость водорода в тантале. Тантал становится также хрупким в серной кислоте при температуре кипения и концентрации 79% и в концентрированной соляной кислоте при 190" С. [c.293]

    Х л орстирол получают декарбоксилированием 2-хлоркоричной кислоты в колбе Кляйзена или в колбе Вюрца, нагреваемой пламенем горелки. За один прием декарбоксилируют от 25 до 200 г 2-хлоркоричной кислоты в присутствии двойного (по весу) количества хинолина и сернокислой меди (10% от веса 2-хлоркоричной кислоты). При нагревании колбы следят за тем, чтобы температура паров, уходящих из колбы, не превышала 220 и чтобы за час отгонялось от до реакционной смеси. На окончание реакции указывает повышение температуры паров до температуры кипения хинолина. 2-Хлорстирол отделяют от основания перегонкой с водяным паром к смеси предварительно добавляют избыток 2,4 н. соляной кислоты (не менее 50%) и 0,02—0,05 мол.% тринитробензола в качестве ингибитора полимеризации. Затем отделяют 2-хлорстирол от воды, сушат хлористым кальцием, безводным сернокислым кальцием или содой и перегоняют, применяя колонку небольшой высоты с насадкой из спиралей. Выход 2-хлор-стирола составляет 50% от теорет. [131. [c.22]

    Твердые алканы делят на две группы веществ — собственно парафин и церезин, различающиеся по кристаллической структуре, химическим и физическим свойствам. При одинаковой температуре плавления церезин отличается от парафина большей молекулярной массой, плотностью и вязкостью. Церезин энергично реагирует с дымящей серной кислотой, с соляной кислотой, в то время как парафин реагирует с ними слабо. При перегонке нефти церезин концентрируется в остатке, а парафин перегоняется с дистиллятом. Ранее делали вывод о том, что церезин представляет собой изоалканы. Однако более высокая температура кипения у церезина, чем у изоалканов соответствующей молекулярной массы, не согласуется с таким выводом. Применение хроматографии и комплексообразования с карбамидом позволило провести систематическое исследование твердых углеводородов и получить [c.196]

    В соляной кислоте любой концентрации при температурах вплоть до температуры кипения. Охрупчивание металла и более высокие скорости коррозии наблюдаются при температурах выше температур кипения под давлением (см. рис. 22.1). [c.381]

    Цирг.оний применяют для изготовления оборудования, работающего в контакте с соляной, уксусной, лимонной и муравьиной кислота лп. Цирконий не разрушается под действием этих кислот даже при температурах кипения. [c.65]

    Однако оказалось, что прн анализе смесп перекисей раз-личного типа ограничиваться одним методом иодометрического анализа нельзя. Так, Рихе и Шмитц при работе с перекисями эфира для определения гидроперекиси применили раствор иодистого калия в уксусной кислоте и проводили анализ при комнатной температуре, а для определения перекисей использовали метод Салли. При определении перекисей, содержащих азот, Рихе, Шмитц и Байер использовали четыре варианта иодометрического метода 1) пробу в растворе иодистого калия и 2н. серной кислоты выдерживали 0,5 ч при комнатной температуре 2) такой же раствор кипятили с обратным холодильником в течение 10 мин 3) нагревали со смесью изопропилового спирта и уксусной кислоты и 4) пробу нагревали со смесью изопропилового спирта и концентрированной соляной кислоты до кипения. [c.432]

    Применение трет-бутилперацетата и 1,1 и-трет-бутилперркси-этана в качестве инициаторов, повышение Температуры реакции до 135—145° С приводят к сокращению времени реакции диметилфосфита с метилбензоатом до 5—6 час. (табл. 98) и повышению выхода и-карбоксифенилфосфоновой кислоты до 77—80% (гидролиз фосфоната проводят концентрированной соляной кислотой при кипении в течение 4 час.) [13]. [c.196]

    После обработки и промывки испытуемого бензина полученный солянокислый экстракт нейтрализуют водньш аммиаком по лакмусу. Выпавший осадок растворяют прибавлением по каплям уксусной кислоты до кислой реакции по лакмусу и сверх того добавляют еще 2 мл уксусной кислоты. Прозрачный раствор нагревают до кипения и медленно прибавляют 6—10 мл 5 %-ного раствора двухромовокислого калия. Кипячение раствора продолжают еще 10 мин. после 10-минутного отстаивания при комнатной температуре осадок хромата свинца отфильтровывают через плотный бумажный фильтр и промывают горячей водой до отсутствия реакции на ион хромата (несколько капель 10%-ного раствора уксуснокислого свинца на 1 мл фильтрата). Промытый осадок на фильтре и остатки хромата свинца в стакане, в котором проводили осаждение, растворяют в 50 мл растворителя (200 мл концентрированной соляной кислоты на 350 мл дистиллированной воды [c.666]

    Хастеллой В и промышленные сплавы аналогичного состава устойчивы в соляной кислоте любой концентрации при температурах вплоть до температуры кипения (рис. 22.1). Скорость коррозии сплава составляет в кипящем 10 % растворе НС1 — 0,23 мм/год в кипящем 20 % растворе НС1 —0,5 мм/год в 37 % растворе НС1 при 65 °С—0,05 мм/год [18]. В кипящих растворах серной кислоты стойкость достаточна вплоть до 60 % растворов H2S04(<0,2 мм/год). В фос( юрнои кислоте скорость коррозии низка при любых концентрациях и температурах наивысшая скорость коррозии в чистой кислоте наблюдается в кипящих 86 % растворах (0,8 мм/год). Стойкость также достаточно высока в различных горячих и холодных органических кислотах. [c.365]

    На практике воду удаляют при 60° и 130 мм рт. ст. Затем давление снижают до 5 мм рт. ст., поднимая температуру в колонне до 90—100° при этом перегоняются моноэтаноламин и этиленгликоль, пока не будет достигнута точка кипения диэтаноламина. В заключение отделяют ди- от триэтаноламина. Чтобы отделить этиленгликоль от моноэтаноламина, их смесь нейтрализуют по метилоранжу концентрировапной соляной кислотой и упаривают в вакууме досуха. Вода и этиленгликоль отгоняются, а остаток представляет солянокислую соль моноэтаноламина, из которой молгно затем выделить свободное основание. [c.419]

    Поливинилфталимид получают полимеризацией винилфтал-пмида в присутствии перекисного инициатора. Полимеризацию проводят в смеси растворителей (85 вес. ч. дихлорэтана и 15 вес. ч. метанола) при температуре кипения этой смеси. Образующийся полимер осаждают из раствора этиловым спиртом. Гидролиз полимера рекомендуется проводить спиртовым раствором гидразин-гидрата при 60°, а затем соляной кислотой. Непосредственный гидролиз поливинилфталимида минеральными кислотами может вызвать деструкцию полимера. [c.389]


Смотреть страницы где упоминается термин Соляная кислота температуру кипения: [c.196]    [c.237]    [c.52]    [c.248]    [c.197]    [c.361]    [c.52]    [c.60]    [c.194]    [c.87]    [c.79]    [c.211]    [c.364]    [c.39]    [c.206]    [c.383]    [c.232]    [c.238]    [c.52]   
Справочник по аналитической химии (1962) -- [ c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота соляная

Соляная кипения

Соляная кислота кислоты

Температура соляной кислоты



© 2025 chem21.info Реклама на сайте