Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная активность хлорида натрия

    Морская вода представляет собой раствор разнообразных солей, главным образом хлоридов, сульфатов и карбонатов натрия, магния, калия, кальция и т.д. Она является электролитом, ее электропроводность достаточно высокая и составляет (2,5-3,0) 10 Ом см , имеет нейтральную или слабощелочную реакцию (pH = 7,2 8,6). Присутствие в морской воде ионов хлора, т.е. ионов-активаторов, делает эту среду высоко коррозионно-активной. [c.157]


    Ускоренные испытания металлических и неметаллических неорганических покрытий на атмосферную коррозию. Эти испытания проводят в соответствии с гост 9.308—85 ЕСЗКС в камерах тепла, влаги, холода, давления, а также с дополнительным воздействием коррозионно-активных агентов — сернистого газа или тумана растворов, например хлорида натрия. [c.277]

    Внутренняя поверхность трубопровода подвергается действию коррозионно-активных агентов нефти с остатками пластовой воды, газоконденсата и газа. Этими агентами являются сера и ее соединения (сероводород и меркаптаны), хлориды кальция, магния, натрия, органические кислоты, углекислый газ и др. Как показали лабораторные исследования, даже подготовленная к транспортировке нефть при взаимодействии с поверхностью деформируемой трубной стали становится агрессивной и снижает выдерживаемое число циклов нагрузки до разрушения, т. е. циклическую долговечность. [c.228]

    Кинетику механохимического эффекта исследовали в условиях активного анодного растворения сталей при пластическом деформировании с постоянной скоростью 8 мм/мин на разрывной машине в электрохимической ячейке. Электролитом служил 3%-ный хлорид натрия (модель сильно обводненной нефти). Скорость анодного растворения определяли путем регистрации силы тока между деформируемым и аналогичным ему недеформируемым образцом, играющим роль катода в модели коррозионной пары. Построение зависимости величины приращения тока от степени деформации вплоть до разрушения осуществляли на двухкоординатном самописце. [c.250]

    Самыми универсальным и простым по составу флюсом является водный раствор хлорида цинка (40 масс. %). Многочисленные вариации этого состава сводятся к частичной замене хлорида цинка хлоридами аммония, натрия, калия, меди или соляной кислотой (от долей процента до 80 % хлорида цинка) для снижения температуры плавления и повышения активности флюса. Безводные составы применяются в виде паст на основе вазелина, канифоли, парафина, глицерина и др. Основное назначение этих флюсов — пайка и лужение железа. Остатки флюсов после пайки должны тщательно удаляться в силу их высокой коррозионной активности. Для пайки нержавеющей стали применяется концентрированная ортофосфорная кислота, насыщенный раствор хлорида цинка и его смесь с соляной кислотой (25 масс. % кислоты). [c.794]


    В зависимости от химического состава, кристаллического строения, толщины окисной пленки и т. п. металл находится в активном или в пассивном состоянии. Термодинамические свойства активного металла характеризуются стандартным электродным потенциалом. Металл в пассивном Состоянии характеризуется наличием пленки, изолирующей его от воздействия Среды потенциал металла в этом случае облагораживается, сдвигается в сторону положительных значений коррозионная стойкость повышается. Ниже сравниваются значения потенциалов некоторых металлов в разбавленном (0,5 н.) растворе хлорида натрия [2, с. 181] со стандартными электродными потенциалами этих металлов в активном состоянии  [c.16]

    Хлориды натрия, калия, магния, кальция и алюминия—широко известные высаливающие агенты. Ограничения в ряду хлоридов хлористый аммоний недостаточно устойчив, хлористый алюминий легко гидролизуется и потому коррозионно-опасен, хлористый калий дороже хлоридов натрия, кальция и магния, высаливающая активность которых выше. [c.100]

    Большое содержание хлор-иона сообщает раствору хлористого натрия повышенную коррозионную активность по отношению к большинству современных конструкционных материалов. Например, установление пассивного состояния для железа, чугуна, низколегированных и среднелегированных сталей является невозможным в растворах хлористого натрия. Даже для высоколегированных хромом сталей пассивное состояние в этих растворах не является устойчивым. Процесс коррозии в растворе хлористого натрия для большинства металлов характерен малым анодным торможением и, вследствие этого, большой скоростью коррозии. Скорость коррозии железа, чугуна и стали в растворах хлорида натрия почти целиком определяется катодным торможением. Из-за малого омического торможения для коррозии в этих растворах характерна большая активность не только микропар, возникающих на поверхности металла, но также и макропар, образовавшихся, например, в результате контакта разнородных металлов. [c.86]

    Титан обладает весьма ценными свойствами, делающими его металлом самой современной техники — высокой прочностью, небольшой плотностью, высокой коррозионной стойкостью. Титан является очень распространенным элементом. Обычная пахотная земля содержит 0,5% титана [33]. Титановые руды не дороги. Все это указывает на потенциальную возможность широкого использования титана. Однако из-за высокой химической активности титана в мелкораздробленном состоянии и стойкости его природных соединений обычные процессы восстановления руды не позволяют получить титан в чистом виде. Для получения элементарного титана применяются такие сильные восстановители как натрий и магний. Современные методы получения элементарного титана основаны на выделении его либо под действием натрия и магния из его хлорида, либо путем термического разложения его иодистых солей. Каждому из применяемых методов присущи недостатки, связанные либо с необходимостью работы при высоких температурах и давлениях с такими активными агентами, как натрий и магний, либо с дорогостоящей и трудоемкой операцией получения иодида титана в больших [c.168]

    Для того, чтобы исключить попадание в раствор электролита хлоридов, железа и других примесей, раствор готовят на основе гидроксидов натрия или калия высокой степени чистоты. Раствор электролита, используемый в установках для электролиза воды, содержит 16—20% NaOH либо 25—30% КОН. Данные концентрации несколько ниже, чем это необходимо для обеспечения максимальной электропроводности, однако с практической точки зрения это обстоятельство позволяет уменьшить коррозионную активность раствора и несколько снизить стоимость электролита. [c.21]

    В нефтях содержатся также водные растворы минеральных солей (хлоридов натрия, магния и др.), образующих с нефтью стойкие эмульсии. При переработке нефти эти соли под действием новьппенных температур разлагаются с выделением хлористого водорода, который является весьма коррозионно-активным агентом. Количество хлористого водорода зависит от количества минеральных солей и температуры нагревания нефтепродукта. Особенно интенсивно коррозионное разрушение металла при совместном действии хлористого водорода и сероводорода, что типично для большинства сернисты х нефтей. [c.170]

    При удалении усиления внутреннего шва долговечность несколько повышается, разрушение начинается с наружного шва, имеющего более плавный переход от усиления к основному металлу. Коррозионно-активная среда (3%-ный хлорид натрия, имитирующий пластовые воды) во всех случаях снижает долговечность. Эффект влияния кор розионно-активной среды выше при отсутствии резких геометрических концентраторов напряжения, т. е. микроконцентраторы более чувствительны к действию среды. [c.231]


    Параллельно с развитием ускоренных испытаний на воздействие осадками соли проводилось изучение сульфата, являющегося активным ионом и присутствующего в загрязненной промышленной среде в качестве ускорителя коррозии. Так, в 30-х годах Ивансом и Бриттеном было предложено использовать туман слабой серной кислоты, а Верноном — смесь разбавленной сернистой кислоты с сульфатом аммония в присутствии хлорида натрия или без него. В дальнейшем стали проводить коррозионные испытания серной кислотой в виде струи, испытания двуокисью серы (метод СКЬ) при использовании испарения раствора сернистой кислоты в высоковлажной среде. Испытание Кестерниха, схожее с испытанием методом СНЬ, широко применялось одно время в Европе для проверки качества изделий с покрытиями, а сейчас используется главным образом для проверки лакокрасочных покрытий. [c.161]

    Катионы пассиватора могут образовывать нерастворимую гидроокись на катодных участках корродирующего металла. Если погрузить железную пластину в морскую воду, содержащую Mg l2, на катодных участках образуется пленка из Mg(0H)2 следовательно, Mg l2 служит катодным ингибитором коррозии железа в растворе хлорида натрия. Это объясняет то, что морская вода менее коррозионно-активна для железа, чем 3 /о-ный раствор хлорида натрия. [c.50]

    Флюсы на основе хлоридов состоят из смеси хлоридов и фто1 калия, натрия, лития, Щ1нка. Эти флюсы при высокой активности пайке имеют большую коррозионную активность, что не позволяет] комендовать их для реставрации музейных экспонатов и особе скульптуры, находящейся на открытом воздухе. [c.144]

    Основная масса реактивных топлив производится прямой перегонкой сернистых и малосернистых нефтей [1]. Дистиллаты реактивных топлив (Т-1, ТС-1 и Т-2) подвергаются щелочной очистке и водной промывке для удаления сероводорода и некоторой части органических кислот. Частично при этом из топлив ТС-1 и Т-2 удаляются меркаптаны. Для более глубокого удаления сернистых соединений, а также кислородных и азотистых соединений, дистиллаты реактивных топлив (ТС-1) из сернистых нефтей подвергаются гидроочистке. В результате получается топливо Т-7, которое обладает меньшей коррозионной агрессивностью и повышенной термической стабильностью [2]. При получении тяжелых реактивных топлив типа Т-5 из малосернистых нефтей используется сернокислотная очистка, позволяющая снизить в топливе количество кислых соединений и смол, что позволяет повысить его термическую стабильность [3]. За рубежом для очистки реактивных топлив от активных сернистых соединений, главным образом меркаптанов, используют обработку хлоридом меди, сульфидом свинца (процесс Бендер ), воздухом в щелочной среде (процесс Мерокс ), воздухом в присутствии едкого натра и уксусного ангидрида (процесс Солютайзер ), водным раствором едкого атра в присутствии метанола (процесс Юнисол ), Эти процессы позволяют снизить содержание меркаптановой серы в реактивных топливах, полученных из сернистых нефтей, ниже 0,001%. В США с помощью процессов Мерокс и Бендер в 1964 г. было получено 3 млн. г реактивного топлива, что составило 12% от общего количества вырабатываемых топлив. При этом общая мощность установок была равна примерно 30% от мощности установок по гидроочистке [4]. [c.8]

    Сильную коррозию экспериментальных материалов наблюдали в 3%-ном растворе Na l и водопроводной воде (фиг. 8). Этого и следовало ожидать, так как другие среды принадлежат к органическим соединениям, коррозионная активность которых относительно невысока. Ход кривых 1, 2 на фиг. 8 иллюстрирует кинетику коррозии стали в контакте с медью соответственно в 3%-ном растворе Na I и водопроводной воде. Сопоставление этих кривых показывает, что в водопроводной воде скорость контактной коррозии была меньше, чем в хлориде натрия. В конце испытания она была равна [c.235]

    Кроме едкого натра в упариваемых растворах содержатся хлорат и хлорид натрия. В зависимости от соотношения этих составляющих и температуры меняется коррозионная активность этих растворов. Как следует из данных табл. 1.15, в горячих (100° С) растворах едкого натра с увеличением концентрации Na IOa до [c.82]

    На стадиях полимеризации, отделения непрореагировавшего ПВА, омыления, промывки и отжима ПВС, подсушки и растворения ПВС рабочие среды обладают слабой и средней агрессивностью по отношению к конструкционным материалам. Наиболее агрессивные компоненты — уксусная кислота (0,1—0,2%), масляная кислота (0,1—0,2%), ацетат натрия (до 0,05%), метиловый спирт. На этих стадиях процесса используют оборудование из высоколегированной стали 12Х18Н10Т, углеродистой стали со стеклоэмалевым покрытием, технического алюминия. На стадиях ацеталирования и промывки ПВС применяют оборудование из углеродистой стали со стеклоэмалевым покрытием. Это связано с тем, что на стадии ацеталирования вводят катализатор — соляную кислоту, наличие которой (0,4—0,001 %), а также хлорида натрия определяет коррозионную активность сред на всех последующих стадиях процесса. [c.297]

    Хлорид натрия относится к коррозионно-активным средам, в особенности при повышенных температурах. В контакте с растворами Na l углеродистая сталь подвержена общей коррозии, нержавеющие хромоникелевые и хромоникельмолибденовые [c.100]

    Применяемая обычно на артезианских водах повышенной минера лизованяости обработка воды яа Ыа-катионитовых фильтрах для предупреждения карбонатного накипсобразоваиия в подогревателях горячего водоснабжения приводит к повышению ее коррозионной активности. Независимо от содержания хлоридов и сульфатов такая вода должна пройти нротивокоррозиопную обработку в вакуумных деаэраторах или путем дозирования силиката натрия. [c.47]

    Интенсивность коррозии усиливается при наличии в водной среде, кроме сероводорода, хлоридов, оказывающих дополнительное агрессивное воздействие. Авторами [39, 125] получен экстремальный характер зависимости скорости коррозии от концентрации КаС1 с максимумом при 100 г/л. Они объясняют это конкурентным влиянием обусловливающих скорость коррозии факторов (разрушение пленки продуктов коррозии под действием хлоридов блокирование активных участков поверхности металла хлорид-ионами при их высоких концентрациях, затрудняющее протекание электродных процессов уменьшение растворимости коррозионно-активного сероводорода при переходе к концентрированным растворам хлористого натрия). [c.18]

    Из этих данных видно, что хлорид алюминия в порошкообразном или расплавленном виде, а также расплав хлоралюмината натрия при изученных температурах обладают высокой коррозионной активностью по отношению к ух леродистым, нержавеющим сталям, никелю и его сплаву ХН78Т, алюминию, меди. Скорость коррозии этих материалов колеблется в пределах от 3,5 до 18 мм/год. Более высокую коррозионную стойкость показали сплав молибдена Щ-10, а также молиб-денсодержащие никелевые сплавы. [c.114]

    Выбор конструкционных материалов. Этот вопрос является как бы ядром в процессе упаривания, поскольку материал должен работать в условиях высокой коррозионной активности и температурных напряжений. Наиболее жесткие условия складываются для процесса упаривания стоков ЭЛОУ под давлением В теплотехническом отношении процесс упаривания под давлением при температурах до 200°С по сравнению с вакуумным методом имеет ряд достоинств он сокращает металлоемкость, существенно снижает затраты тепла и электроэнергии. Однако, с другой стороны, при высоких температурах и давлениях возрастают коррозионные явления и температурная депрессия, снижается растворимость сульфата кальция и др. С повышением температуры коррозионная активность солей начинает резко возрастать. Так, присуто вующие в стоках ЭЛОУ хлориды магния и кальция начинают при температуре выше 100°С гидролизоваться с выделением соляной кислоты. При этом соляная кислота осуществляет две функции первую - растворяет карбонаты, бикарбонаты, гидроокиси металлов вторую - корродирует конструкционные материалы, из которых выполнена установка. Исследования, проведенные при температуре 200°С, давлении 20 ат, рН=5 в растворах солей, содержащих до 20% хлорида натрия, показали, что наибольшую коррозионную стойкость (общая коррозия и коррозионное растрескивание под напряжением) показала сталь 08Н2Н6М2Т (ЭП-54). Эту сталь можно использовать для изготовления основного технологического оборудования теплообменников, змеевиков печей, насосов, испарителей, арматуры. На рис,10-12 приведены технологические схемы упаривания [c.48]

    Цирконий обладает высокой коррозионной стойкостью в серной, соляной и азотной кислотах до 100 "С, а также в растворах щелочей (едкого натра, едкого кали) и аммиака хорошо растворяется в плавиковой и кипящей серной кислотах. При 200—400 °С цирконий взаимодействует с галогенами, образуя тетрагалогениды, при этом активность галогенов по отношению к цирконию уменьшается с возрастанием атомного номера галогена. Со фтором цирконий реагирует при комнатной температуре, при этом образуется фторид циркония (7гр4) взаимодействие с хлором начинается при 200—400 °С, в результате чего образуется хлорид циркония (7гС14). [c.258]

    Опыты с охлаждающими рассолами подтвердили, что хлорид кальция менее коррозионноагрессивен, чем хлористый натрий, вероятно, потому, что катодный продукт (гидроокись кальция или, в некоторых случаях, карбонат кальция) является менее растворимым. Думали, что в цементных растворах, содержащих хлорид кальция, активность С1 уменьшена до безопасного уровня благодаря образованию комплексных ионов, однако никаких физико-химических исследований этих систем, кажется, не было проведено. В других системах, для которых образование комплексов изучалось в лаборатории, в основном было найдено, что (комплексы являются более или менее диссоциируемыми. Следовательно, к аргументам, основанным на образовании комплексов, следует в данный момент подходить пока с осторожностью. Такие наблюдения, которые были отмечены, не всегда полностью согласуются. Буковики лабораторным путем нашел, что цемент, содержащий хлорид кальция, вызывает ржавление в таких условиях, где тот же цемент без хлорида не дает коррозии. Однако в опытах Мюллера с бетонными блоками, содержавшими металлические бруски, экспонировавшимися в открытой атмосфере и в наполовину погруженном состоянии в реку, не было найдено разницы в коррозионном поведении блоков с хлоридом кальция или без него. Есть надежда, что опыты на. исследовательской станции по строительству (упомянутой выше) разрешат эти противоречия. Между тем, читатель может пока изучить две статьи [ИЗ]. [c.280]


Смотреть страницы где упоминается термин Коррозионная активность хлорида натрия: [c.226]    [c.226]    [c.315]    [c.218]   
Коррозия и защита химической аппаратуры Том 6 (1972) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Натрия хлорид



© 2025 chem21.info Реклама на сайте