Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полистирол характеристика

Таблица 5.2. Характеристика сточных вод вспенивающегося полистирола до и после электроочистки Таблица 5.2. <a href="/info/1466748">Характеристика сточных</a> вод вспенивающегося полистирола до и после электроочистки

    Для защитных покрытий применяется не собственно полиизобутилен, а смеси его с порошкообразными ингредиентами (сажа, тальк и др.) или термопластичными органическими веществами (полиэтилен, полистирол). Характеристика обкладочных материалов на основе полиизобутилена приведена в табл. I. 5. [c.37]

    Характеристики сточных вод производства полистирола в зависимости от способа промывки приведены ниже  [c.98]

    Зависимость молекулярно-массовых характеристик полистирола от удельного коэффициента поглощения [ 16,19] [c.72]

    Определение молекулярных характеристик по данным эксклюзионной хроматографии проводят с помощью калибровочной кривой, отражающей связь удерживаемых объемов с молекулярной массой. Существует несколько методов калибровки хроматографической системы. Наиболее надежным из них является калибровка по узкодисперсным образцам исследуемого полимера (М лг/Мп=<1,1). В этом случае хроматографируют ряд стандартов, перекрывающих требуемый диапазон молекулярных масс, измеряют удерживаемые объемы в максимумах пиков и строят зависимость логарифма молекулярной массы от удерживаемого объема, получая калибровочную кривую типа показанной на рис.2.16. Если по каким-либо причинам не удается получить линейную калибровочную зависимость, то нелинейную 8-образную кривую аппроксимируют полиномом (обычно достаточно полинома третьей степени). Этот метод часто используют при исследовании индивидуальных макромолекул, в частности, белков. Так, на рис.2.18 приведена Калибровочная зависимость для геля TSK3000SW, построенная по 25 белкам. Однако для многих типов синтетических полимеров такие стандарты обычно отсутствуют, а их приготовление чрезвычайно трудоемко. Наиболее доступны стандарты полистирола. Они, как правило, имеют нормальное логарифмическое ММР, для которого справедливо соотношение Мр= /Муу Мп (Мр — молекулярная масса, соответствующая максимуму пика полимера), и широко применяются в практике эксклюзионной хроматографии. При использовании калибровочной кривой, построенной по полистирольным стандартам, для определения молекулярных характеристик других полимеров результаты получают в относительных величинах (в так называемой полистирольной шкале ). [c.53]

    Нами в качестве пластификаторов использовались парафин, нафталин, эпоксидная смола, полистирол, поливинилхлорид (ПВХ), характеристики которых приведены в табл. 3. [c.196]

    Полистирол — термопластичный материал с высокими диэлектрическими показателями. Он химически стоек, водостоек и бесцветен, однако имеет низкую механическую прочность и невысокую теплостойкость. В связи с этим модификация свойств полистирола направлена на улучшение его перерабатываемости, повышение его ударопрочности, огне- и атмосферостойкости, прозрачности. Улучшение качества и придание требуемого комплекса свойств полистиролу достигается путем введения в него различных добавок, а также способом химической модификации (блочная и привитая сополимеризация). Получение полистирольных пластиков с новыми качественными характеристиками расширяет сферу их применения в промышленности. [c.376]


    Полистирол загружается в реактор. Органический растворитель в количестве 90% от необходимого объема по рецептуре закачивается в реактор через акустический генератор. За счет акустического воздействия процесс растворения происходит очень интенсивно. Заданное качество полимерного лака достигается за счет его рециркуляции и повторной подачи через акустический генератор. Процесс продолжается до полного растворения полимерного материала. После окончания процесса растворения с помощью оставшегося объема растворителя доводят технические характеристики лака до требований ТУ. [c.138]

    В тех случаях, когда расходуемые в производственном процессе сырье, материалы и полуфабрикаты имеют различную Р1лажность, концентрацию, содержание основного (полезного) р ен1ества, расходные ко-зффициенты рассчитываются исходя и.- особенностей характеристики материально-сырьевых ресурсов, предусмотренной ГОСТом, ТУ или РТУ. Например, расходные коэффициенты по таким видам сырья, как фенол, крезол и другие, в производстве пластических масс устанавливаются в пересчете на 100%-ное содержание их, фосфорная кислота — на 95%-иое содержание пятиокиси фосфора, аммиачная вода — иа 25 %-ное содержание аммиака и т. д. В производстве химических волокон, где расходуемое сырье для выпуска продукции имеет большую гигроскопичность, расходные коэффициенты устанавливаются по кондиционному весу, т. е. весу с заранее установленной нормой влажности. Так, в производстве вискозного волокна норма влажности целлюлозы (исходного сырья) установлена 12%, корда-капрона —до 0,2% и т. д., в производстве пластических масс — полистирола суспензионного — 67о, древесной муки — 5,3% и т. д. [c.142]

    Поляризуемость полимерной молекулы по направлению главной оси и поперек ее различна. Поскольку главные оси полимерных молекул ориентированы перпендикулярно радиусу сферолита, такие агрегаты обладают способностью к двулучепреломлению и рассеивают лучи света, если их размер оказывается соизмерим с длиной волны видимого света (в то же время аморфные полимеры, например полистирол, оптически прозрачны). Размеры сферолитов влияют не только на оптические свойства полимеров, но также и на их механические характеристики. Степень кристалличности, число и размеры кристаллитов так же, как и скорость кристаллизации, существенно зависят как от температуры кристаллизации (отжига), так и от величины молекулярной ориентации (степени ориентации) в момент кристаллизации, вызванной воздействием внешнего поля механических напряжений. [c.40]

    Скибо, Херцберг и Мансон [191] изучали характеристики роста усталостной трещины в полистироле в интервале значений коэффициента интенсивности напряжений и частоты. Образцы с нанесенным односторонним надрезом и испытываемые на растяжение компактные образцы, изготовленные из листов промышленного полистирола (с молекулярной массой 2,7-10 ), были подвергнуты циклическому нагружению с постоянной амплитудой на частотах 0,1, 1, 10 и 100 Гц, что соответствовало скоростям роста усталостной трещины от 4 10 до 4Х X10 см/цикл. При заданном значении интенсивности напряжений скорость роста усталостной трещины уменьшается с увеличением частоты, причем само уменьшение скорости роста наиболее сильно выражено при больших значениях интенсивности напряжения. Чувствительность данного полимера к частоте во всем исследованном интервале значений была объяснена влиянием переменной компоненты ползучести. В макроскопическом масштабе поверхность разрушения была двух различных типов. Прп низких значениях интенсивности напряжений наблюдалась зеркальная поверхность с высокой отражательной способностью, которая с увеличением интенсивности напряжения превращалась в шероховатую матовую поверхность. Повышая частоту, сдвигали переход между этими типами поверхности разрушения в сторону более высоких значений интенсивности напряжений. Микроскопическое исследование зеркальной поверхности выявило распространение обычной трещины вдоль одной трещины серебра, в то время как исследование шероховатой поверхности выявляло рост обычной трещины через большое число трещин серебра, причем все они в среднем были перпендикулярны оси приложенного напряжения. Электронное фракто-графическое исследование зеркальной области выявило много параллельных полос, перпендикулярных направлению роста обычной трещины, каждая из которых формировалась в процессе ее прерывистого роста в ряде усталостных циклов. Размер таких полос соответствовал размеру пластической зоны у вершины трещины, рассчитанной по модели Дагдейла. При высоких значениях интенсивности напряжений была получена новая система параллельных следов в матовой области, которая соответствовала приращению длины трещины за один цикл нагружения [191]. [c.412]

    Полистирол [—СН 2—СН(СвН в)— ] — стеклообразный, хрупкий продукт полимеризации стирола СНг=СН—СвН 5.Чистый полистирол получают в результате высокотемпературной полимеризации (сначала при 80° С, затем при повышении температуры до 200° С) жидкого стирола без инициатора. Диэлектрические характеристики такого полимера близки к соответствующим характеристикам полиэтилена. Применяется он как высококачественный электроизоляционный материал в технике высоких и сверхвысоких частот (каркасы катушек, панели электронных ламп, изоляция высокочастотных кабелей и т. д.). [c.383]


    Блочный полистирол отличается наиболее высокой чистотой, что благоприятно сказывается на его оптической прозрачности и диэлектрических характеристиках. Однако блочная полимеризация даже в варианте непрерывного метода недостаточно производительна и требует тщательного сложного контроля за всеми стадиями процесса. Несравненно производительнее [c.809]

    В концентрированном золе AgJ, содержащем vq = 4-10 частиц в 1 муг при радиусе частиц г = 30 Mfi, время коагуляции Tss 1/2000 сек. в золе AgJ нормальной концентрации, обычно применяемом для определения коагуляции, значение Т изменяется от 1 сек. до 1 мин. Прейс использовала измерения Т при коагуляции латекса полистирола электролитами для количественной характеристики агрегативной устойчивости золя. [c.151]

    Впервые гомогенные мембраны были получены радиационной прививкой стирола к полиэтиленовой пленке с последующим хлорметилированием и аминированием триметиламином [332]. Мембраны имели удовлетворительные электрохимические характеристики и высокую механическую прочность, содержание привитого полистирола составляло 20—30%. [c.129]

    Обсуждение. Для получения хороших ИК-спектров в большинстве случаев приходится проводить измерения неоднократно, действуя методом проб и ошибок. Это связано с особенностями подготовленного образца (например, с непрозрачностью пасты или интенсивной окраской раствора). Точное положение полос можно получить только после калибровки спектра по стандартам (обычно по пленке полистирола). Например, если полоса полистирола при 6,24 мкм (1603 см ) смещена на определенную величину (например, 0,05 мкм), то положение полос образца должно быть исправлено на эту величину. ИК-Спектр полистирола приведен на рис. 5.8 следует обратить внимание на значительные различия в спектрах, вызванные переходом от одной линейной шкалы к другой. Это важно, поскольку дополнительная корреляция калибровки должна делаться только для той же линейной шкалы, которая была использована при записи спектра образца. Кроме того, качественная идентификация вешества по области отпечатков пальцев зависит от общего вида спектра. Химик-органик обычно пользуется длинами волн (X, мкм), или чаще частотами, или волновыми числами (V, см ), интенсивностью поглощения (с — сильная, ср — средняя, сл — слабая) и в редких случаях в качестве характеристики применяется ширина полосы. [c.148]

    Исследования эффективности различных материалов, выполненные фирмами Аэроджет Дженерал Корпорейшн и Дженерал Атомик ДиБИжн , показали, что оптимальными материалами для дренажей с точки зрения механических, гидравлических характеристик и стоимости являются гибкие листовые материалы, получаемые прессованием полимерных порошков полиуретана, полистирола, поливинилхлорида и др. [c.167]

    Помимо сточных вод производства полистирола электрообработке подвергали смешанный сток, образованный из локальных стоков производства полистирола различных марок. Изучение злектрообработки смешанного стока представляет интерес еще и потому, что экономически, как правило, более выгодным является строительство очистных сооружений для общего стока. Ниже приведены усредненные физико-химические характеристики смешанного стока  [c.103]

    Для электроизоляционных целей, когда необходимы малые диэлектрические потери, особенно при высоких частотах, применяется полистирол, полученный блочной полимеризацией. Чистый лолистирол блочной полимеризации по значению е и tgб близок к полиэтилену. Эти характеристики, так же как у полиэтилена, не изменяются в широком диапазоне частот. [c.118]

    Проведенные физико-механические испытания и определение огнестойкости показали, что прочностные характеристики (прочность при растяжении и сжатии, ударная вмкость) модифицированного хлорированного полистирола увеличиваются на 30 - 50% [c.77]

    Для многих твердых пластических ыатерпалов термическая характеристика заключается в нахождении температуры, при которой имеет место определенпос изменение в структуре материала прн заданном давлении. Например, в методе Вика [4, 32, 47] игла (имеющая площадь острия I Ш1 ) при определенном давлении (обычно не превышающем I кг) вдавливается в поверхность стандартного образца (минимальная ширина 18 мм, толщина 3 мм), который нагревается с заданной скоростью (50° в час). Температура, при которой наблюдается погружение иглы на 1 нм, принимается за точку размягчения, или температуру пенстрации. Это испытание применено к полиэтилену, полистиролу и полиакрилатам с точностью до 2° Для мягких образцов поливинилхлорида, поливинилиденхлорида и некоторых других эластомеров область размягчения слишком велика, чтобы получить такую точность. [c.68]

    Для лакокрасочных покрытий, предназначенных для защиты металлов от коррозии в атмосферных условиях, важной характеристикой является паропроницаемость. По мнению ряда исследователей, проникновение влаги через полимерные материалы протекает по-разному в одних существуют постоянные зазоры и поры, через которые в основном проникают молекулы воды, в других же зазоры возникают кратковременно в результате теплового движения макромолекул. Типичным представителем первого класса полимеров являются фенолоформальдегидные смолы, производные целлюлозы, полистирола, полиэтилена. Ко второму классу относятся полимеры типа каучуков, обладающие значительной упругостью. Влагопроницае-мость, а также влагопоглощение (водонабухание) находятся в сильной зависимости от структуры органических полимеров. При этом различают полимеры с трехмерной структурой и линейные, Полимеры с трехмерной структурой, например фенольные смолы, отличаются сильно разветвленной молекулярной структурой, вследствие чего молекулам водяного пара и воды приходится преодолевать большой путь. Поэтому влагопрони-цаемость фенольных смол относительно мала. [c.115]

    М. м. п. определяется условиями его синтеза и последующих превраи1С1Пгй и м. б. рассчитана, если известен механизм р-ций образования (превращения) и оиределспы кон станты скорости их элементарных стадий. Опа определяет мп. св-ва полимера так, увеличение мол. массы приводит, с одиой стороны, к улучшению их мех. св-в, достигающих иек-рых предельных характеристик при большом значении мол. массы с др. стороны — к значит, росту вязкости расплавов и р-ров полимеров, затрудняющему их переработку. Так, оптим. значения мол. массы полиэтилена высокой плотности составляют от 100 ООО до 300 ООО, полистирола — вг 300 ООО до 400 ООО, полиформальдегида — от 40 ООО до 150 000. [c.347]

    Еще одна особенность хроматографии макромолекул связана с проблемой доступности всего объема неподвижной фазы внутри гранул. Ограничение такой доступности вследствие статистического разброса размеров пор пространственной сеткн гранул используется для фракционирования макромолекул по размерам в методе гель-фильтрации, одиако в других вариантах хроматографии ограничение доступности не только уменьшает емкость системы, но и существенно затрудняет установление равновесия в неподвижной фазе. В этом плане обычные микропористые обменники на основе силикагеля, стекла п полистирола существенно уступают крупнопористым матрицам из целлюлозы и даже декстрана. К сожалению, матрицы двух последних типов легко деформируются и потому непригодны для хроматографии при повышенном давлении. Правда, в последние годы путем специальной обработки удалось получить крупнопористые, пригодные для фракционирования белков матрицы и из перечисленных выше жестких материалов их марки и характеристики приведены ниже. [c.47]

    Проанализируем в деталях совместимость полистирола (ПС) и поливи-нилмстилового эфира (ПВМЭ) с помощью критерия (345). Сначала предположим, что ПС является растворителем для ПВМЭ. Ис.чодные. характеристики, необ.ходимые для использования критерия (345), приведены в табл.48. Подставляя значения этих характеристик в критерий (420), по.тучаем [c.377]

    Различают два способа пластикации (П.)-механический и термоокислительный (без мех. воздействия). Осн. значение в пром-сти имеет мех. способ. Подводимая к полимеру мех. энергия вызывает гл. обр. деструкцию макромолекул (см. Деструкция полимеров), скорость и глубина к-рой определяются хим. природой полимера, его мол. массой и структурой, т-рой и интенсивностью мех. воздействия и оценивается по уменьшению степени полимеризации (величины мол. массы) или по изменению пластоэластич. характеристик (см. Реология). При повышении т-ры скорость и глубина деструкции проходят через минимум. В зависимости от типа полимера существует определенный температурный диапазон, в к-ром П. полимера минимальна т-ра, соответствующая такой П, наз. т-рой макс. стабильности при сдвиге (Tj ) и составляет (°С) для натурального и изопренового (СКИ) каучуков 80-115, для 1/ с-бутадиено-вого (СКД) 20-120, стирольного (СКС) 60-120, этилен-пропиленового каучука (СКЭПТ) 85-155, полихлоропрена 100-110, полиизобутилена 110-140, поливинилхлорида 195, полистирола 180-260, полипропилена >215, полиметилметакрилата 140. [c.561]

    Ароматические П. отличаются высокой радиац. стойкостью. Так, пленки из поли-4,4 -дифениленоксидпиромел-литимида сохраняют хорошие мех. и электрич. характеристики после облучения электронами высокой энергии дозой 10 МДж/кг (пленки из полистирола и полиэтилентерефталата становятся хрупкими после облучения дозой [c.628]

    С, полиизОйрена -73°С), пластмасс-варьируют в широких пределах (в частности, поливинилхлорида 82 С, полистирола и полиметилметакрилата ок. 100 С, поликарбоната 150°С, полиимидов 300-400°С), неорг. стекол-достигают 1000°С и выше. С.т. определяет эксплуатац. характеристики полимерных материалов теплостойкость пластмасс и морозостойкость эластомеров (каучуков и резин). л. я. Малкин. [c.425]

    Для сопоставления Т. полимеров часто используют данные термогравиметрии, в частности т-ру начала потерь массы образца или т-ру, при к-рой потери массы составляют определенную долю от исходной массы образца. При использовании дифференциального термического анализа возможно более точное определение т-ры начала интенсивных хим. превращений в образце. За рубежом для оценки Т. используют т. наз. температурный индекс (Temperature Index)-т-ру, при к-рой прочностные и диэлектрич. характеристики полимерного материала изменяются на 50% приблизительно за 3,5 года эксплуатации. Эту величину находят экстраполяцией данных ускоренного термич. старения. Температурный индекс (°С) составляет, напр., для полистирола 50, полиацеталей 75-85, алифатич. полиамидов 65-80, поликарбонатов 110-115, полиимидов 240. [c.547]

    Характеристиками литьевых машин являются максимальная доза впрыска и пластицируюш,ая способность. Под максимальной дозой впрыска понимают объем материала, который может быть впрыснут в литьевую форму за один цикл литья эту величину часто выражают массой максимальной отливки полистирола общего назначения. Максимальная доза впрыска полиамидов, плотность которых больше плотности полистирола, обычно меньше подсчитанной по полистиролу. Предпластикация позволяет увеличить эту величину до теоретически рассчитанной и даже [c.171]

    Метод матричной десорбционно-ионизационной времяпро-летной масс-спектрометрии (МАЬВТ-ТОР М8) используется для характеристики молекулярно-массового распределения олигомеров (полистирола, полиметилметакрилата, полиэтиленгликоля и др.), а также для изучения различных механизмов инициирования и обрыва цепи при синтезе полимеров, с характеристикой концевых групп [48]. Этот же метод успешно применен [49] для измерения молекулярной массы и ММР в полидисперсньЕХ полимерах и сополимерах в данном случае масс-спектрометр выступает как детектор для гельпроникающей хроматографии [50]. [c.147]

    ММР и молекулярная масса влияют а физико-механические свойства полимеров непосредственно или косвенно, определяя кристаллическую структуру, плотность, степень ориентации. Исследования зависимостей прочности при растяжении, удлинения при разрыве, прочности при изгибе полистирола, полиэтилена, полипропилена, поливинилхлорида и других по -меров показали, что прочность растет при увеличении Мш и Мп до некоторых критически значший, а затем сохраняется постоянной. Если значения Мш и М выше критических, то прочностные характеристики полимера не зависят от ММР. [c.144]

    Полихлорметилстирол с Мда = 3-10 применяемый в качестве негативного резиста, позволяет достичь высокого разрещения из-за малого рассеяния электронов, а также равномерного распределения поглощенной энергии по глубине. Его термостойкость и стойкость к сухому травлению на уровне соответствующих характеристик позитивных новолачных фоторезистов AZ. Постэкспозиционное фотоотверждение резко уменьшает уход размеров рельефа вплоть до 300°С. Свойства резиста сопоставимы со свойствами хлорметилированного полистирола [136]. [c.266]

    Особый интерес представляет изучение полистирольных растворов люминофоров. Как видно из табл. 25, в полистироле исследованные люминофоры обладают более высокой радиационной устойчивостью, чем в жидких растворах. Даже при дозах I —10 Мрад содержание производных этилена и оксазола практически не изменяется, а в случае производных пира-золина эти изменения очень малы. Так как сцинтилляционные характеристики в этих случаях снижаются очень резко, это позволило нам сделать вывод о том, что радиационное повреждение полистирола обусловлено в основном изменениями, происходящими в полимерной основе. [c.201]

    II инфракрасные спектры (см. разделы 2.3.6 и 2.3.9). Сопоставьте полученные результаты с характеристиками полистирола, полученного свободнорадикальной полимеризацией. [c.151]

    Кроме непосредственного определения концентрации примесей в самом полимере, техника парофазного анализа с успехом применяется при санитарно-гигиенических исследованиях полимеров. Целью таких исследований является характеристика полимеров как источников загрязнения контактирующих с ними сред, и для такой з арактеристики знания концентраций летучих примесей в полимерных изделиях и материалах недостаточно. Для исследования интенсивности и динамики выделения вредных веществ из полимеров в воздушную среду могут использоваться все разновидности техники парофаз-нрго анализа. Во многих случаях газовыделение столь значительно, что возможен прямой газохроматографи- еский анализ небольших проб воздуха из герметически закупоренных сосудов с полимерами (см., например, работы по исследованию газовыделений бутадиен-сти- .ольных резин [96] и строительных материалов на ос- ове поливинилхлорида [97] или полистирола [98]). Для определения очень малых концентраций приходит-, как и при анализе других объектов, применять предварительное концентрирование [99] с последующей [c.153]


Библиография для Полистирол характеристика: [c.87]   
Смотреть страницы где упоминается термин Полистирол характеристика: [c.232]    [c.240]    [c.88]    [c.89]    [c.54]    [c.65]    [c.88]   
Препаративные методы химии полимеров (1963) -- [ c.248 , c.342 ]




ПОИСК





Смотрите так же термины и статьи:

Полистирол гигиеническая характеристика

Полистирол механические характеристики

Полистирол санитарно-гигиенич. характеристик

Полистирол структурные характеристики

Полистирол сцинтилляционные характеристики

Полистирол термодинамические характеристики

Технические характеристики прочностных свойств полистиролов

Токсикологическая характеристика полистирол

Характеристика отдельных полимеров. Полиэтилен. Полиизобутилен Полистирол. Поливинилхлорид. Политетрафторэтилен. Синтетические каучуки. Понятие о вулканизации. Поливинилацетат. Поливиниловый спирт. Полиметилметакрилат

Характеристики вязкоупругих свойств полистиролов в основных релаксационных областях



© 2025 chem21.info Реклама на сайте