Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектры, расшифровка характеристические частоты

    Взаимодействие вращательного и колебательного движений молекул газа приводит к появлению тонкой структуры полос поглощения. Наличие тонкой структуры часто усложняет спектры, но помогает в расшифровке характеристических частот и, следовательно, в идентификации молекул. [c.12]

    В области изучения комплексных соединений колебательные спектры, в особенности инфракрасные спектры поглощения (спектры комбинационного рассеивания применяются значительно реже), являются одним из важнейших источников информации о координационной емкости полидентатного лиганда, строении комплекса, симметрии координационной сферы, прочности и характере связи металл — лиганд [131—133]. Расшифровка ИК-спектров требует детального изучения их, при этом учитываются значения частот полос поглощения и их интенсивности, формы контуров и т. д. В ряде случаев правильная интерпретация спектров возможна лишь с привлечением расчетных методов. В связи с большой сложностью и трудоемкостью расчетов колебательных спектров комплексных соединений большая часть исследований в этой области основана на интерпретации спектров по характеристическим частотам. [c.69]


    Для расшифровки состава природных органических соединений нефти и нефтепродуктов и характеристики их свойств применяются оптические методы. Сюда относятся инфракрасная и ультрафиолетовая спектрометрия, метод комбинационного рассеяния света, определения показателя преломления и оптической активности. Вещество, через которое проходит излучение, поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. Каждый ион, атом, молекула дают характерные частоты в спектре поглощения, спектре испускания и спектре комбинационного рассеяния. Задачей спектрального анализа является определение этих характеристических частот, зная которые, можно определить качественный состав углеводородной смеси. Для этого существуют таблицы характеристических частот индивидуальных углеводородов. Для количественного анализа еще необходима оценка интенсивности излучения. [c.228]

    Имеющиеся в таблицах значения характеристических частот изменяются в довольно широком интервале. Например, область валентных колебаний двойной углерод-углеродной связи находится в пределах 1580—1680 см . Интервалы различных групп часто перекрываются. Широкий интервал варьирования частот затрудняет расшифровку спектра, однако знание закономерностей изменения [c.279]

    Силовые постоянные групп —С—С—, —С—С— и —С=С— относятся друг к другу приблизительно как 1 2 3. Это различие намного превышает требующиеся 25%, поэтому в случае кратных связей всегда следует ожидать появления характеристических частот. Необходимое различие масс [условие (б)] особенно хорошо выполняется для связей атома углерода с атомами водорода, серы, хлора и другими, но не с атомами кислорода или азота. Следовательно, для С—Н-, С—С1-связей (в отличие от связей —С—О— —С—С— или —С—N—) следует ожидать появления характеристических частот поглощения. Таким образом, многочисленные структурные группы поглощают вне зависимости от остальной части молекулы в очень узкой, строго ограниченной области инфракрасного спектра. Соответствующие этому поглощению частоты называют характеристическими или групповыми. Они служат для обнаружения в молекуле определенных функциональных групп [481. В соответствии с уравнением (5.3.3) характеристические частоты в значительной степени определяются величинами колеблющихся масс и силовыми постоянными. Из этого вытекает естественный ряд характеристических частот групп в инфракрасных спектрах (табл. 5.10), которые могут быть полезными при расшифровке ИК-спектров. [c.224]


    Инфракрасные спектры поглощения характеризуют колебательно-вибрационные частоты связей в определенных атомных группировках — карбонильной группе С = О (5,5 — 6,0 р.), в иминогруппе Ы—Н (2,8—2,9 р.), в гидроксильной группе ОН (2,7—2,85 р.), С—Н-связи в метильной группе (3,2—3,5 р) и др. Число возможных внутренних колебаний в сложной молекуле полимеров чрезвычайно велико, что затрудняет полную расшифровку инфракрасных спектров поэтому иногда приходится ограничиваться установлением характеристических частот, присущих определенным атомным группам (рис. 21). Интенсивность поглощения, т. е. высота спектральных максимумов, характеризует количественное содержание соответствующих групп в данном веществе. Измерения инфракрасных спектров часто произ- [c.61]

    Весьма существенным является то, что почти все структурные элементы проявляют поглощение в нескольких областях ИК-спектра, так как одновременно возбуждаются различные типы валентных и деформационных колебаний это означает, что наряду с интенсивными полосами поглощения с характеристическими частотами в ИК-спектре всегда проявляются еще и другие полосы поглощения, соответствующие тем же структурным элементам. Наличие в молекуле определенного структурного элемента можно считать однозначно доказанным только в том случае, если в спектре обнаруживают все соответствующие этому элементу полосы поглощения. Расшифровка структур неизвестных соединений (разд. А,3.7) основывается прежде всего на этом требовании. [c.137]

    Число возможных внутренних колебаний в сложной молекуле полимеров чрезвычайно велико, что затрудняет полную расшифровку инфракрасных спектров поэтому иногда приходится ограничиваться установлением характеристических частот, присущих определенным атомным группам (рис. 22). Интенсивность поглощения, т. е. высота спектральных максимумов, характеризует количественное содержание соответствующих групп в данном веществе. [c.56]

    Пособие содержит общие указания по интерпретации спектров — колебательных, электронных, протонного магнитного резонанса первого и второго порядка, ЯМР- С и масс-спектров, а также по использованию молекулярной рефракции, дисперсии и моментов электрических диполей в структурном анализе. Методика расшифровки спектров и обработки неспектральных данных излагается при подробном разъяснении примеров. В справочных таблицах приведены данные по характеристическим частотам и массам, химическим сдвигам, рефракциям и моментам диполей, [c.2]

    Таблицы характеристических частот дают более точные значения волновых чисел. В табл. 25 включены только те сведения, которые были использованы в рассмотренных выше примерах расшифровки ИК спектров. Аналогичные таблицы имеются для всех классов химических соединений и всех функциональных групп. [c.319]

    Рассмотренные формулировки взаимозависимости электроотрицательностей и характеристических частот полезны для расшифровки молекулярных спектров и предсказания новых частот. Однако различные формы математической зависимости свидетельствуют об их приближенном характере, что в свою очередь заставляет весьма осторожно подходить к значениям электроотрицательностей, полученным таким путем. [c.47]

    Известно, что расшифровка спектра поглошения макромолекулы представляет собой сложную задачу. Поэтому на практике спектральные исследования проводят с учетом характеристических частот (волновых чисел) различных химических группировок, а также изменения их интенсивности. Так, при контроле отверждения эпоксидных связующих в работе [50] использовалось-изменение оптической плотности полос поглошения 910 и 1260 см колебаний эпоксидных групп по сравнению с оптической плотностью полосы 1510 см не меняющей интенсивности в процессе отверждения. Полосы поглошения эпоксидных групп в конечной стадии отверждения уменьшаются, что свидетельствует о взаимодействии этих групп с первичными и вторичными аминами. [c.63]

    ИК-спектры позволяют установить присутствие в соединении той или иной функциональной группы. Для этого используются характеристические групповые частоты (они обычно находятся в области v>1500 см- ). Например, свободные гидроксильные группы поглощают в области 3600 см", аминогруппы — 3400 см , карбонильные—1720 см-, соединения с двойными и тройными связями— при 1650 и 2200 СМ соответственно и т. д. Конкретное значение частоты для данной функциональной группы позволяет судить о ближайшем окружении этой группы в молекуле. Интерпретация ИК-спектров является в значительной степени эмпирической задачей. Для расшифровки ИК-спектров используют таблицы или корреляционные диаграммы. [c.212]

    Метод крайне полезен при расшифровке неизвестных структур, так как некоторые химические группы (метильная, карбонильная и др.) имеют характеристические полосы поглощения, положение и интенсивность которых более или менее постоянны. Такие групповые частоты можно переносить от одного соединения к другому. Более детально групповые частоты будут обсуждены после краткого введения в теорию ИК-спектров поглощения. [c.135]


    ИК-спектр поливинилового спирта исследован в области 3600—70 СМ [921, 925]. Для расшифровки спектра были использованы прежде всего характеристические групповые частоты. Прп интерпретации полос учитывали также их дихроизм и изменения при дейтерировании образца [1666, 1667, 1674]. В работе [203] для исследования Р1К-спектра поливинилового спирта была использована структурная модель с гетеротактической конфигурацией молекулы. Поскольку такая модель лишь частично учитывает взаимодействия между различными колебаниями, данные, приведенные в табл. 6.22, следует рассматривать лишь как приблизительные. На рис. 6.15 показан ИК-спектр торгового преимущественно синдиотактического поливинилового спирта. [c.254]

    При расшифровке ИК-спектра необходимо зиять экспериментальные данные гю поглощению отдельных функциональных групп — так пазыпаемые характеристические частоты. [c.201]

    Расшифровка ИК-спектров заключается в отнесении наблюдаемых полос ногло-щения к колебаниям атомов по определенной связи или к колебаниям группы атомов. При этом пользуются экспериментальными табличными данными по положению и интенсивности характеристических частот, имеющимися в литературе. Ниже, в таОл. 24, приведены данные по положению характеристических частот в ИК-слектрах, а в табл. 25 приведены более полные данные и по их положению и интенсивности. Отметим, что некоторая, даже приблизительная оценка ингенсивности полос чрезвычайно важна для правильного их отнесения. Так, было бы совсем неправильно приписать относительно слабую полосу около 1700 см - в ИК-спектре чистого сое,1Инення на- [c.201]

    Процесс расшифровки ИК-спектра надо начинать с высокочастотной области характеристических частот. Следует установить, к производным какого класса углеводородов относится исследуемое соединение, учитывая различие в частотах алифатических, ненасыщенных и ароматических соединений в области 3000— 2800 см . Затем перейти к поиску функциональных групп ОН, NH в более высокочастотной области (v > 3000 см ). Контур этих полос (широкий или узкий) зависит от степени участия атомов в яодородных связях. В интервале 2000—1450 см следует искать соединения со связями С=0, =N, N=N (валентные колебания). В области 1500—1100 см могут наблюдаться деформационные колебания связей ОН, NH и СН. В процессе отнесения следует ориентироваться на табл. 6.4—6.7 или на справочную литературу [2, [c.181]

    Большинство полос поглощения в ИК-спектрах органических соединений, как правило, не поддаются расшифровке по табличным данным характеристических частот. Это в первую очередь касается области ниже 1400 см" , особенно богатой пиками и перегжбаш, которую часто называют областью "отпечатка пальцев" или "фингерпринта" В этой области различные соединения, для которых характерны сходные полосы поглощения в интервале 3600-1400.см" , имеют почти всегда различные частоты колебания. Также трудно подцаются точному учету различные обертонные и составные частоты, которые могут проявиться в различшх местах. [c.264]

    Даются общие указания по интерпретации колебательных и электронных спектров, спектров протонного магнитного резонанса первого и второго порядка, применению молекулярной рефракции, дисперсии и дипольных моментов для структурного анализа. Методика расшифровки спектров иллюстрируется подробно разъясненными примерами и больщим числом задач, требующих раздельного и совместного применения основных физических методов. Многочисленные воспроизведенные в достаточно крупном масштабе спектры сняты на современной аппаратуре. Необходимые данные по характеристическим частотам, химическим сдвигам, рефракциям и дипольным моментам приводятся в справочных таблицах. [c.2]

    Два последних высокомолекулярных алифатических углеводорода (полиэтилен и гидрированный полибутадиен) уникальны в том отношении, что они представляют собой примеры нерегулярно разветвленных структур. Фокс и Мертин при изучении инфракрасных снектров углеводородов в области 3—4 [л обнаружили полосу поглощения при 3,38 ц в спектре полиэтилена, которая является характеристической областью колебаний связи С—Н в метильных группах. Было определено, что соотношение СНз составляет от 1/д до 1/70- Все эти величины значительно превышают частоты, которых следовало ожидать, если бы полимеры представляли собой линейные углеводороды. Многие исследователи с тех пор способствовали детальной расшифровке инфракрасных спектров полиэтилена. Наиболее полные и точные исследования провели Рагг [28] и Кросс [9]. Последняя работа представляет особый интерес, поскольку в ней была определена зависимость между интенсивностью поглощения метильных групп и плотностью полимера. Степень кристалличности полиэтилена была определена при помощи нескольких различных методов, основанных, например, на измерениях плотности инфракрасных спектров, дифракции Х-лучей и теплоемкости. Ни один из этих методов не принимался за абсолютный, но метод, основанный на определении плотпости полимера, по-видимому, один из дающих наиболее достоверные данные. Поэтому Кросс впервые установил, что существует тесная зависимость между числом метильных групп в нолиэтиленах и их кристалличностью. [c.169]

    Еще одна важнейшая для катализа система — это этилен, адсорбированный на поверхности металлического катализатора. Как показали термические исследования, этилен хемосорбируется на платиновом и родиевом катализаторах. Теперь мы можем непосредственно получить информацию о тех структурах, которые образуются на поверхности, измеряя колебательные частоты адсорбированных частиц. Прямое измерение этих частот иногда возможно с помощью адсорбционной ИК-спектроскопии. Проведение таких исследований существенно ускорилось благодаря спектроскопии потерь электронной энергии (EELS). Характеристические молекулярные частоты проявляются в энергетическом распределении электронов, отраженных металлической поверхностью. Эти частоты подобны отпечаткам пальцев, которые легко поймет химик, имеющий опыт расшифровки ИК-спектров (см. разд. V-B). При адсорбции этилена на родии спектр EELS сразу показывает, что в молекуле этилена происходят структурные изменения даже при комнатной температуре. При нагревании до 50 ° С спектр начинает меняться еще сильнее, а как только температура достигает 100 ° С, спектр показывает, что произошла реакция и на поверхности образовались углеводороды совсем другого строения. Из этих спектров, в частности, следует, что при указанной темпера- [c.187]

    При расшифровке рентгеновских спектров различных материалов молодой исследователь получил весьма неожиданный результат каждому элементу можно было приписать характеристическое рентгеновское излучение, частота которого прямо пропорциональна квадрату порядкового номера соответствующего химического элемента. Когда Мозли сопоставил частоты рентгеновского излучения элементов с порядковым номером оказалось, что они возрастают от элемента к элементу на постоянную величину. В декабре 1913 года в своей первой работе О высокочастотных спектрах элементов , опубликованной в Философикл мэгэзин , физик писал Мы получили доказательство, что атом обладает какой-то основной характеристикой, которая равномерно возрастает при переходе от одного элемента к другому. Эта величина может быть только зарядом положительного ядра . [c.80]


Смотреть страницы где упоминается термин спектры, расшифровка характеристические частоты: [c.189]    [c.270]    [c.459]    [c.224]    [c.459]    [c.54]    [c.263]   
Органикум Часть2 (1992) -- [ c.133 ]




ПОИСК





Смотрите так же термины и статьи:

Спектр расшифровка

Спектр характеристические частоты

Спектры характеристический

Характеристические частоты

спектры частоты



© 2025 chem21.info Реклама на сайте