Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спин-спиновое взаимодействие сдвигу

    Лекция 8. Сущность метода ЯМР, условие резонанса. Основное уравнение ЯМР. Химический сдвиг. Спин-спиновое взаимодействие. Схема ЯМР-спектрометра. Расшифровка спектров ПМР. Особенности ЯМР-спектроскопии С. [c.206]

    Применение Н ЯМР-спектроскопии к анализу нефтяных фракций не получило столь широкого развития, как газо-жидкостной хроматографии или масс-сПектрометрии, что связано со спецификой метода. Так, в сложных смесях,— учитывая и без того небольшой интервал значений характеристических величин, в данном случае химических сдвигов (всего 20 м. д. для протонов из всех возможных классов органических соединений) — близкие по структуре соединения дают лишь уширение сигналов. Дальнейшее усложнение спектров происходит за счет спин-спинового взаимодействия Н-атомов. Применение ПМР-спектров для количественной оценки тех или иных групп обычно затруднено. Так, определить интенсивности сигналов протонов различных алифатических групп трудно в виду их перекрывания. Определение интегральных интен- [c.140]


    Определение структуры вещества. Так как основными параметрами ЯМР-спектроскопии высокого разрешения являются химический сдвиг, константа спин-спинового взаимодействия и ин- [c.264]

    Значения некоторых геминаль-ных и вицинальных констант протонного спин-спинового взаимодействия приведены в табл. 1.7. Очевидно, что наряду с химическими сдвигами эти константы, т. е. величины расщеплений сигналов в спектрах ПМР, могут использоваться для идентификации соединений и вообще в структурно-аналитических целях. [c.27]

    В случае других ядер дело обстоит много сложнее. Как и для химических сдвигов, приближенные теоретические расчеты констант спин-спинового взаимодействия обычно не приводят к хорошим результатам. [c.29]

    Анализ структуры спектров ЯМР, рассмотренный выше, касался в основном достаточно простых спектров первого порядка, но часто наблюдаются гораздо более сложные спектры не первого порядка, которые на первый взгляд кажутся непонятными. Это случается тогда, когда разность химических сдвигов двух типов ядер не отличается в несколько раз от значений константы спин-спинового взаимодействия, как бывает при наблюдении спектров первого порядка, для которых характерно неравенство [c.30]

    Анализ спектров не первого порядка, если они не сводятся к первому, требует специального математического аппарата и моделей для расчетов положения и интенсивности линий, а также моделирующих и итерационных программ для использоваиия ЭВМ. Когда в спиновой системе много взаимодействующих ядер, учитывают свойства симметрии с целью факторизации гамильтониана и сведения задачи к решению нескольких более простых. Так или иначе, в результате проводимого анализа сложных спектров не первого порядка получают значения химических сдвигов и констант спин-спинового взаимодействия, а иногда и важную дополнительную информацию, например, относительные знаки констант. [c.31]

    Спектроскопия ЯМР широко и успешно применяется для исследования равновесных химических превращений и обменных процессов, при которых периодически меняется строение, а значит, электронное окружение магнитных ядер и спин-спиновое взаимодействие ядер, т. е. химические сдвиги б и константы /. К таким процессам относятся как внутримолекулярные превращения (заторможенное внутреннее вращение, инверсия пирамидальной системы связей у азота, инверсия циклов, таутомерия и т. д.), так и межмо-лекулярные обменные и другие равновесные химические реакции (протонный обмен в водных растворах карбоновых кислот, аммиака, лигандный обмен, рекомбинация ионов, биохимические взаимодействия фермент — субстрат и т. д.). [c.40]


    Спектры высокого разрешения подразделяют на два типа. К первому типу относят спектры, в которых разность в значениях химических сдвигов протонов, образующих спиновую систему, значительно (не менее чем в 6 раз) превышает значение константы спин-спинового взаимодействия. Таким спектрам соответствуют спиновые системы АтХ . Их называют спектрами первого порядка. Мульти- [c.290]

    Спектры ПМР записывает оператор. Студент готовит образец синтезированного им препарата, определяет химические сдвиги, рассчитывает константы спин-спинового взаимодействия и делает отнесение имеющихся в спектре сигналов к соответствующим фрагментам структуры синтезированного соединения. [c.292]

    Спектры ПМР характеризуются двумя параметрами — химическим сдвигом и константами спин-спинового взаимодействия, которые находятся в соответствии со структурой соединения и распределением электронной плотности в молекуле. [c.65]

    В результате взаимодействия спинов неэквивалентных протонов через валентные электроны имеет место спин-спиновое расщепление, которое также позволяет получить информацию о строении вещества. При этом вместо одного сигнала, соответствующего химическому сдвигу протона, появляется несколько сигналов. Расстояние между этими сигналами характеризует энергию спин-спинового взаимодействия и выражается в герцах. [c.66]

    Спектры систем типа АВг- Трехспиновая система АВг, содержащая два эквивалентных ядра В, имеет одну константу спин-спинового взаимодействия Дв и теоретически должна давать девять линий в спектре (рис. 4.13). Однако в спектре систем типа АВг видно семь линий, потому что комбинационная линия 9 очень мало интенсивна (< 0,02 интенсивности линии 3) и теряется в шумах, а две самые интенсивные линии спектра 5 а 6 имеют столь близкие частоты, что сливаются в одну линию, наиболее интенсивную в этом спектре. Положение этой линии определяет порядок нумерации линий в спектре (рис. 4.13). Химический сдвиг ядра А совпадает по положению с линией 3 спектра, а ядра В— с серединой между линиями 5 и 7. Общий контур спектра системы типа АВг зависит от отношения А ав/ ав- - [c.8]

    Второй, не менее важный этап интерпретации спектра ЯМР состоит в определении положения в молекуле магнитных ядер, дающих обнаруженные в спектре сигналы. Основанием для такого соотнесения сигналов служат их положение (химический сдвиг) и структура (мультиплетность, значения констант спин-спинового взаимодействия). Прежде чем сопоставлять химический сдвиг каждого из сигналов с табличными данными, полезно учесть перечисленные ниже общие закономерности расположения сигналов в спектрах ПМР. [c.18]

    Кроме величины химического сдвига (т. е. положения сигнала в спектре ПМР) первостепенное значение для определения строения органических веществ имеет форма (структура) сигналов. Простые синглетные сигналы (узкие полосы с одним максимумом) соответствуют, как правило, магнитным ядрам, в непосредственной близости от которых (на расстоянии до трех простых ковалентных связей) нет других магнитных ядер. Между близко расположенными магнитными ядрами через посредство связевых электронов осуществляется так называемое спин-спиновое взаимодействие, приводящее к расщеплению магнитных энергетических уровней и связанному с этим воз- [c.28]

    Расшифруйте с указанием химических сдвигов и констант спин-спинового взаимодействия спектр ПМР кетона С НюО (рис. 4.50) и определите его строение. [c.109]

    Сигналы в спектре ЯМР усложнены вследствие спин-спинового взаимодействия ядер с протонами. При этом из-зз больших значений констант Усн, как правило, наблюдается пере-, крывание компонент мультиплетов различных ядер С, что затрудняет расшифровку спектра. Спин-спиновое взаимодействие 1 С— С в спектре не наблюдается, поскольку в природных образцах очень мала вероятность нахождения в молекуле двух соседних атомов С. На рис. 5.1 представлен спектр ЯМР 1 С, в котором проявляется спин-спиновое взаимодействие углеродных атомов с протонами. В принципе этот спектр позволяет получить всю возможную информацию об углеродных атомах химический сдвиг, мультиплетность сигналов, константы спин-спинового взаимодействия, относительную интенсивность сигналов. Однако из-за сложности спектральной кривой сделать это не всегда возможно. [c.136]

    Сведения о химических сдвигах углеродных атомов обычно получают из спектров с полным подавлением спин-спинового взаимодействия с протонами. Интервал химических сдвигов углерода составляет около 250 м. д., что более чем на порядок превышает область химических сдвигов протонов. Поскольку при Этом сигналы в спектре ЯМР С имеют малую ширину, то практически каждой линии в спектре соответствует одна группа химически эквивалентных углеродных атомов . В качестве эталонного соединения в, спектроскопии ЯМР. С выбран тетра- метилсилан, химический сдвиг которого принят за О м. д. (на рис. 5.2 это крайний правый сигнал спектра). Сдвиги в слабое поле относительно ТМС считают положительными (шкала 8с). В качестве дополнительных эталонов на практике часто выбирают сигналы растворителей, химические сдвиги которых в 8с -шкале приведены в табл. П1Х. [c.136]


    Электронное спин-спиновое взаимодействие сдвигает молекулярные зеемановские уровни даже в пределе В- 0, и поэтому появляется так называемое расщепление нулевого поля последнее впервые наблюдали Хатчинсон и Мангум [14]. [c.286]

    Существование и некоторые особенности инверсии циклогекса-нового кольца были по дтверждены экспериментально методом ПМР. Теоретически резонанс атомов е-Н и а-Н должен пооисходить в разных полях, и можно было бы ожидать появления двух разных линий химического сдвига, вероятно, с тонкой структурой за счет спин-спинового взаимодействия. На самом деле в соответствующей области ПМР-спектра циклогексана протону отвечает лишь одна линия. Это можно объяснить только очень быстрой инверсией кресловидной формы. Тогда каждый протон половину времени экваториален, а половину — аксиален, и все они дают один общий усредненный сигнал. Но при понижении температуры инверсия должна замедляться, и действительно при температуре около —100 °С наблюдаются уже две группы полос, отвечающих экваториальным и аксиальным протонам [62, 63]. При —66,7 °С полосы сливаются. Расчет на основании этих данных показал, что скорость инверсии циклогексана составляет 105 с- при —66,7°С [63]. [c.40]

    Спин-спиновое взаимодействие является следствием небольших магнитных полей, которые существуют на соседних парамагнитных ионах. Под действием этих полей общее поле у ионов слегка меняется и энергетические уровни сдвигаются. Возникает распределение энергий, которое вызывает уширение сигнала. Поскольку уширение есть функция (1//- )(1 - Зсо5 0), где г — расстояние между ионами, а 0 — угол между направлением поля и осью симметрии, то оно существенно зависит от направления приложенного поля. Этот эффект можно ослабить, если [c.47]

    СН3СН2 представляют химические сдвиги протонов соответственно метильной и метиленовой групп, а расстояния между компонентами обоих мультиплетов дают константу про-тон-протонного спин-спинового взаимодействия /нн (через три связи). Соотношение общих (суммарных) интегральных интенсивностей мультиплетов СНз- и СНг-групп остается в соответствии с отношением чисел протонов в группах, т. е. 3 2. [c.26]

    Поскольку химический сдвиг б зависит от напряженности пиешнего магнитного поля, а константа спин-спинового взаимодействия — нет, то регистрация спектров ЯМР при более высокой напряженности поля позволяет увеличить отношение Аб /, т. е. приблизить картину спектра к первому порядку. [c.31]

    Большую роль спектроскопия ЯМР сыграла в развитии теоретических концепций органической химии, касающихся, в частности, строения и стереохимии интермедиатов и механизмов химических реакций. Получены структурные данные о таких интермедиатах многих практически важных химических реакций, какими являются карбкатионы и карбанионы. Например, в случае изо-пропильного катиона значения химических сдвигов 8.ц и 8. ,с показывают значительное дезэкранирование магнитных ядер, особенно углерода, а значение константы спин-спинового взаимодействия /13С1Н свидетельствует о практически плоской структуре центральной части катиона (т. е., что гибридизация центрального атома углерода близка к зр ). Исследуют как классические кар-бониевые ионы, так и неклассические а-мостиковые карбкатионы, [c.38]

    Константы спин-спинового взаимодействия не зависят от рабочей частоты прибора, но зависят от числа связей, через которые передается взаимодействие. Чем больше этих связей, тем, как правило, меньше константа. Константа спин-спинового взаимодействия зависит также от типа связей и геометрии молекул. Для каждого типа ядер и связей она величина постоянная и, как хи.мический сдвиг, является важнейшим параметром спектров ЯМР, несущим информацию о строении вещества. Значение константы зависит от природы резонирующих ядер, причем для ядер водорода она варьируется от О до 20 Гд в зявисимости от строения оргаичческого соединения (см, табл. 16). [c.289]

    Спектры, пoлy leн ыe с учетом спин-спинового взаимодействия, называются спектрами высокого разрешения. Система ядер, в которой происходит спин-спиновое взаимодействие, называется спиновой системой. Ядра в такой системе принято обозначать латинскими буквами А, В, С,. .., X, V. Если в спиновой системе два ядра или более имеют одинаковый химический сдвиг, то их называют химически эквивалентными и обозначают одной буквой с цифровым обозначением числа этих ядер, например АД д. Химически неэквивалентные протоны с близкими химическими сдвигами обозначают соседними [c.289]

    На рисунке приведен спектр изопропилового спирта Протоны ме-тнльных групп химически эквивалентны и поэтому их химические сдвиги одинаковы. В результате спин-спинового взаимодействия с потоном СН-группы сигнал метильных протонов расщепляется в дуплет. В соответствии с правилом мультиплетности (/У= - -1) сигнал протонов метиновой группировки расщепляется в септет. Сигнал протона гидроксильной группы (сравните интенсивности сигналов) проявляется в спектре в виде уширенного синглета. [c.299]

    Ниже будут разобраны четыре примера расшифровки указанных типов спектров и вычисления химических сдвигов протонов и констант спин-спинового взаимодействия. Все спектры получены для 10%-ных растворов в СС1д на приборах Уаг ап ЕМ 360 (60 МГц), А-60 (60 МГц) и НА-100О (100 МГц). В качестве внутреннего эталона применяли гексаметилдисилок-сан, но сдвиги пересчитаны по отношению к тетраметилсилану. [c.95]

    При классификации спиновой системы следует на основании структуры и геометрии молекулы определить химическую и магнитную эквивалентность протонов, оценить соотношение между химическими сдвигами и константами спин-спинового взаимодействия (пользуясь табл. ПУ, ПУГП и полагая рабочую частоту равной 60 МГц), а затем предложить буквенное обозначение системы. [c.102]

    Вычисляте химические сдвиги и константы спин-спинового взаимодействия протонов в сульфоне СзН4028 из спектра ПМР (рис. 4.52) и установите его строение. [c.115]

    Расшифруйте изображенные на рис. 4.63 спектры ПМР 3-цианотиофена (а), хлорангидрида тиофен-2-карбоновой кислоты (б) и аминотиофена (в). Строение последнего установите путем сопоставления химических сдвигов и констант спин-спинового взаимодействия с соответствующими величинами, найденными из спектров а и б. [c.115]

    Определите химические сдвиги и константы спин-спинового взаимодействия протонов в спектре ПМР соединения СзНвВг и установите его строение (рис. 4.67). [c.115]

    Расшифруйте спектр ПМР эфира 2,3-дифенилциклопропанкарбоновой кислоты (рис. 4.69) и определите его геометрическую конфигурацию на основании химических сдвигов и констант спин-спинового взаимодействия протонов цикла. [c.134]

    Кроме величины химического сдвига в спектроскопии ЯМР для решения структурных задач используется константа спин-спинового взаимодействия углерода с протонами. Поскольку спиновое число для и одно и то же, то для предсказания мультиплетности сигнала в спектре ЯМР применимы те же правила, что и в спектрах ПМР первого порядка. Константы спин-спи-нового взаимодействия в ходё структурного анализа обычно не определяются, поскольку съемка чаще всего проводится в условиях полного или частичного подавления спин-спинового взаимодействия с протонами. Однако эти константы могут быть получены из спектра без подаеления взаимодействия с протонами. [c.142]


Смотреть страницы где упоминается термин Спин-спиновое взаимодействие сдвигу: [c.78]    [c.78]    [c.191]    [c.40]    [c.291]    [c.6]    [c.24]    [c.28]    [c.73]    [c.77]    [c.97]    [c.115]    [c.115]   
Физические методы в неорганической химии (1967) -- [ c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие спин спин

Спин-эхо

Спины



© 2025 chem21.info Реклама на сайте